551 research outputs found

    Integrating sustainability into day-to-day business: a tacticalmanagement dashboard for O-LCA

    Get PDF
    In order to respond to the challenge of sustainable development, organizations need to manage the social, environmental and economic impacts of their activities. Existing approaches to manage organizational sustainability either are limited by a narrow perspective or lack concepts and tools to integrate sustainability considerations into day-to-day business. We address this issue by proposing a tactical management dashboard based on Organizational Life Cycle Assessment (O-LCA), an authoritative and comprehensive methodology for organizational sustainability analysis.We have developed a concept for a tactical sustainability management dashboard based on O-LCA guidelines and best-practices for dashboard design that allows managers (who may not be LCA experts) to explore, analyze and interpret O-LCA study results. The concept was implemented in an early software prototype and evaluated regarding its usability. Our concept and prototype show the viability and utility of a management tool based on O-LCA

    Die pliozÀnen und quartÀren Pluvialzeiten der Sahara

    Get PDF
    In der betrachteten Zeitspanne (Beginn PliozĂ€n bis Gegenwart) treten in der Sahara zwei Typen von Pluvialen auf. Im N-Teil der Sahara ist das PliozĂ€n trocken, ebenso das HolozĂ€n. Im PleistozĂ€n treten sechs Pluviale auf, die zeitlich und kausal mit den ektropischen Kaltzeiten ĂŒbereinstimmen („polare Pluviale"). In der S-HĂ€lfte der Sahara ist das PliozĂ€n feucht, ebenso das HolozĂ€n vom Neolithikum ab. Dazwischen ist das PleistozĂ€n zumeist trocken, erst spĂ€t (etwa Ende Riß bis Mitte WĂŒrm) tritt ein Pluvial auf. Die S-Saum-Pluviale zeigen daher keine oder nur indirekte Beziehungen zu den ektropischen Kaltzeiten („Àquatoriale Pluviale"). Je weiter wir in die Vergangenheit zurĂŒckgehen, desto klarer zeigen die fossilen Zeugnisse eine andere Art und Verteilung der KlimagĂŒrtel an. Ihre rein rĂŒckschauende Ableitung aus dem Gegenwartsklima („klimatischer Aktualismus") erwies sich als irreal. Daher wird versucht, von einem relativ gut rekonstruierbaren Klimazustand der Vergangenheit aus auf das Gegenwartsklima als exakt bekannten Endpunkt vorzuschreiten. Als solcher Ausgangspunkt empfahl sich das Klima vom EozĂ€n bis zur Mio-PliozĂ€n-Wende. HierfĂŒr wird der Begriff „Alte Tropenerde" vorgeschlagen. Die Erde war damals durch gleichmĂ€ĂŸig warmes Klima, das Vorherrschen von Ostwinden, einer Rotlehm-Kaolin-Verwitterung und vorherrschende FlĂ€chenbildung bis in hohe Breiten ausgezeichnet. Vereiste Polarklimate fehlten. Die zonale Klimagliederung war schwach, insbesondere traten durchlaufende PassatwĂŒsten zurĂŒck. Die gegen Ende der „Alten Tropenerde" spĂŒrbare langsame AbkĂŒhlung verstĂ€rkte sich im PliozĂ€n. Die VergrĂ¶ĂŸerung der (noch mĂ€ĂŸig) kalten Polarhauben förderte das DruckgefĂ€lle Pol/Äquator. Die Folge ist eine stĂ€rkere zonale Gliederung der KlimagĂŒrtel. Auch das Subtropen-hoch tritt deutlicher hervor. Die Austrocknung der heutigen Sahara beginnt im N und setzt sich im Laufe des PliozĂ€n bis zum S fort. Die pleistozĂ€nen Kaltzeiten fördern dagegen die Meridional- Zirkulation. Ihre Spuren treten am N-Saum von der ersten Kaltzeit an als „Pluviale" auf; am S-Saum erscheint ein solches erst im JungpleistozĂ€n. Erst in der WĂŒrmzeit wird daher die Sahara von beiden Seiten her durch FeuchtgĂŒrtel eingeengt, wie es dem Idealbild A. Penck's entsprach. Es mĂŒssen also bestimmte ZĂŒge des „Eiszeitenklimas" sich erst im Laufe des PleistozĂ€n entwickelt und schließlich in der WĂŒrmzeit kumuliert haben. Vier solche Entwicklungen wirkten dabei zusammen. Die beiden ersten: fortschreitende Gebirgshebungen und die allmĂ€hliche Vereisung der Nordpolargebiete fördern die Meridional-Zirkulation auf der N-Halbkugel. Die dritte: die fortdauernde Absenkung der interglazial-eustatischen OzeanhochstĂ€nde (Sizil - Milazz - Tyrrhen I - Monastir) förderte durch die VergrĂ¶ĂŸerung der KontinentflĂ€chen gleichfalls die Meridional-Zirkulation. Viertens wird auf Grund dieser sinkenden OzeanstĂ€nde ein verzögerter Aufbau des antarktischen Inlandeises abgeleitet. Im ÄltestpleistozĂ€n noch fehlend, wurde es im Alt- und MittelpleistozĂ€n zunĂ€chst in den Kaltzeiten, von einem bestimmten Umfang an (im JungpleistozĂ€n) aber nur noch in den Warmzeiten weiter aufgebaut. Am grĂ¶ĂŸten war es wahrscheinlich zu Beginn des WĂŒrm (300—800 m mĂ€chtiger als heute). Daher wurde im WĂŒrm die S-Halbkugel besonders stark abgekĂŒhlt, rĂŒckte der thermische Äquator und der Ă€quatoriale RegengĂŒrtel besonders weit nordwĂ€rts, so daß er auf den S-Saum der Sahara mit einem Pluvial ĂŒbergreifen konnte.researc

    Die Klimazonen des Eiszeitalters

    Get PDF
    researc

    Hang- und Talbildung in SĂŒdost-Spitzbergen (auf Grund der Stauferland-Expedition 1959 bis 1967)

    Get PDF
    researc

    A Robust and Universal Metaproteomics Workflow for Research Studies and Routine Diagnostics Within 24 h Using Phenol Extraction, FASP Digest, and the MetaProteomeAnalyzer

    Get PDF
    The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.Peer Reviewe

    Superhydrophobic Terrestrial Cyanobacteria and Land Plant Transition

    Get PDF
    Plants and other organisms have evolved structures and mechanisms for colonizing land since the Early Ordovician. In this context, their surfaces, the crucial physical interface with the environment, are mainly considered barriers against water loss. It is suggested that extreme water repellency (superhydrophobicity) was an additional key innovation for the transition of algae from water to land some 400 mya. Superhydrophobicity enhances gas exchange on land and excludes aquatic competitors in water films. In a different context, in material science and surface technology, superhydrophobicity has also become one of the most important bioinspired innovations enabling the avoidance of water films and contamination. Here, we present data for an extremely water-repellent cyanobacterial biofilm of the desiccation tolerant Hassallia byssoidea providing evidence for a much earlier prokaryotic Precambrian (ca. 1–2 bya) origin of superhydrophobicity and chemical heterogeneities associated with land transition. The multicellular cyanobacterium is functionally differentiated in a submerged basal hydrophilic absorbing portion like a “rhizoid” and an upright emersed superhydrophobic “phyllocauloid” filament for assimilation, nitrogen fixation, and splash dispersed diaspores. Additional data are provided for superhydrophobic surfaces in terrestrial green algae and in virtually all ancestral land plants (Bryophytes, ferns and allies, Amborella, Nelumbo), slime molds, and fungi. Rethinking of superhydrophobicity as an essential first step for life in terrestrial environments is suggested

    Cryptic photosynthesis, Extrasolar planetary oxygen without a surface biological signature

    Full text link
    On the Earth, photosynthetic organisms are responsible for the production of virtually all of the oxygen in the atmosphere. On the land, vegetation reflects in the visible, leading to a red edge that developed about 450 Myr ago and has been proposed as a biosignature for life on extrasolar planets. However, in many regions of the Earth, and particularly where surface conditions are extreme, for example in hot and cold deserts, photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few metres depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We link geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth-analogs that show detectable atmospheric biomarkers like our own planet, but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.Comment: 23 pages, 2 figures, Astrobiology (TBP) - updated Table 1, typo in detectable O2 correcte

    Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability

    Get PDF
    AbstractBiological soil crusts are communities composed of cryptogamic organisms such as lichens, mosses, cyanobacteria and green algae that form a skin on soils in areas where vascular plants are excluded or limited by water availability or temperature. The lichen Psora decipiens (Hedw.) Hoffm. is a characteristic key organism in these communities in many different biomes. The species has a generalistic ecology and high morphological variation, which contributes to the ability of the species to withstand environmental changes. We investigated whether different populations, based on site and associated morpho-anatomical differences, incorporate functional water relations and how/whether this was driven by changes in abiotic factors. Samples were collected from two climatically distinct sites, one ‘dry’ site in southern Spain and one ‘wet’ site in the Austrian Alps. Our results showed that samples from the dry site had a significantly thicker epinecral layer, higher specific thallus area, a faster water uptake and contained more water per dry mass, all of which contributed to a much slower drying rate. Both populations showed a highly adjusted water gain that incorporates functional water relations and diffusion properties as a result of local water availability. We show eco-physiological and morphological mechanisms that underlie the high variability in P. decipiens and suggest how these might provide ecological benefits for this generalist lichen species.</jats:p
    • 

    corecore