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Water relations in the soil crust lichen Psora decipiens are optimized via anatomical variability  1 

C. COLESIE, L. WILLIAMS, B. BÜDEL 2 

Abstract 3 

Biological soil crusts are communities composed of cryptogamic organisms such as lichens, mosses, 4 

cyanobacteria and green algae that form a skin on soils in areas where vascular plants are excluded or 5 

limited by water availability or temperature. The lichen Psora decipiens (Hedw.) Hoffm. is a 6 

characteristic key organism in these communities in many different biomes. The species has a 7 

generalistic ecology and high morphological variation, which contributes to the ability of the species 8 

to withstand environmental changes. We investigated whether different populations, based on site and 9 

associated morpho-anatomical differences, incorporate functional water relations and how/whether 10 

this was mediated by changes in abiotic factors. Samples were collected from two climatically distinct 11 

sites, one “dry” site in southern Spain, and one “wet” site in the Austrian Alps. Our results showed 12 

that samples from the dry site had a significantly thicker epinecral layer, higher specific thallus area, a 13 

faster water uptake and contained more water per dry weight, all of which contributed to a much 14 

slower drying rate. Both populations showed a highly adjusted water gain that incorporates functional 15 

water relations and diffusion properties as a result of local water availability. We show eco-16 

physiological and morphological mechanisms that underlie the high variability in P. decipiens and 17 

draw conclusions around the ecological benefits for this generalistic lichen species such as optimized 18 

water relations and light exploitation. 19 

 20 

Keywords 21 

Biological soil crusts, hydrological characteristics, epinecral layer, lichens, phenotypic plasticity, 22 

drying rate 23 

 24 
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Introduction 26 

The concept of ecotypes, defined as distinct genotypes (or populations) within a species, resulting 27 

from adaptation to local environmental conditions (Hufford & Mazer 2003), describes the geographic 28 

variation within a species and the balance between local adaptation and intra-specific hybridization 29 

(Begon et al. 2006). In lichenology, to distinguish between differentially exposed populations, the 30 

concept of ecotypes can be used, for example to describe different altitudinal distributions (Nadyeina 31 

et al. 2014). Another interpretation of structural changes in lichen thalli from different populations is 32 

often described as phenotypic plasticity. For example, different rates of photosynthesis occur as a 33 

result of differences in thallus hydration, due to structural changes, when comparisons are made 34 

between north- and south facing populations of Ramalina capitata (Ach.) Nyl. (Pintado et al. 1997) 35 

and vagrant compared with attached thalli of Cetraria aculeata (Schreber) Fr. (Pérez-Ortega et al. 36 

2012). Increasing the amount of rhizinae is a modification that can improve thallus hydration and 37 

therefore photosynthesis, when comparing epilithic versus epiphytic populations of Parmelia 38 

pastillifera (Harm.) Hale (Tretiach & Brown 1995). Finally, Catillaria corymbosa (Hue) I. M. Lamb, 39 

an Antarctic endemic species, showed an increased water retention capacity and therefore more 40 

photosynthesis in shaded localities (Sojo et al. 1997).  41 

In drylands, vascular plants are limited due to low water availability and therefore biological soil 42 

crusts (BSC) become a dominant component of vegetation (Pointing & Belnap 2012; Büdel et al. 43 

2014). BSCs also occur in high alpine areas above the tree-line, typically when the mean temperature 44 

of the warmest month is below 10°C (Körner, 1998), seventy to eighty percent of the precipitation 45 

falls as snow, and snow cover lasts 270 to 300 d (Auer et al., 2002). BSCs are small scale 46 

poikilohydric lichen-bryophyte and microbial communities that are considered to be ecosystem 47 

engineers (Pointing & Belnap, 2012) that stabilize soil (Belnap et al. 2003), and make significant 48 

contributions to the carbon and nitrogen fixation budgets (Elbert et al. 2012). Lichens often form the 49 

major proportion at the climax stage of these communities (Büdel et al. 2009). Studies on soil lichen 50 

populations, including their functional aspects and morphological differences, are need to enable us to 51 
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predict climate change scenarios in these areas; these habitats are considered to be at high risk  in 52 

recent climate change projections (IPCC 2012).  53 

Here we studied the differences in morpho- anatomical and hydrological traits of two populations of 54 

Psora decipiens (Hedw.) Hoffm., a typical lichen occurring in the climax stage of biological soil crusts 55 

worldwide (Büdel 2003, Galun & Garty 2003, Rosentreter & Belnap 2003.  Two contrasting areas 56 

with distinct populations were selected: a high alpine environment (“Site Hochtor”, Fig. 1A) and arid 57 

badlands (“Site Almeria”, Fig. 1B). Preliminary observations indicated (1) strong variance in overall 58 

thallus structure and appearance and (2) higher vitality of the alpine population (based on mean thallus 59 

size and vivid color). Based on this field observation we hypothesized, that local water availability is a 60 

major driver for morpho-anatomical differences in lichens and thallus water relations can be optimized 61 

to local necessities.  62 

Material and Methods 63 

Study sites, organisms and sampling 64 

We chose two sampling sites that support natural BSC occurrence, but differ considerably in their 65 

environmental conditions. The first, and humid “Site Hochtor”, was a high alpine area at an elevation 66 

of 2500 to 2600 m asl. of the Großglockner massif, Austria. The second site was the dry site, “Site 67 

Almeria”, located in South East Spain. This location was considered as one of the driest and sunniest 68 

in Europe, and has been described in previous studies (Lázaro et al. 2001, Cantón et al. 2004). 69 

Psora decipiens is a pale pink squamulose-crustose lichen with conspicuous white-pruinose, often 70 

upturned margins. The lower cortex is white, poorly developed or absent and the attached hyphal net 71 

penetrates into the substrate. It is a cosmopolitan lichen and is well known as indicator species for 72 

intact BSC climax stages (Fig. 1C and D).  73 

Samples (30) were randomly collected at each site in areas with homogenous BSC cover and no 74 

shading from plants. Each sample unit was a 9.2 cm² section of an intact P. decipiens dominated BSC, 75 

where several thalli were growing. Sampling at site Hochtor took place in August 2013 and at site 76 

Almeria in June 2013. Samples were dried at room temperature within 3 d of collection, transported 77 
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and stored frozen. In the laboratory the surrounding soil crust was removed from the thalli, which were 78 

then washed. The number of replicates used in each experiment is indicated below. 79 

Climate measurements 80 

Both investigation sites were equipped with similar climate stations, capable of monitoring air 81 

temperature and humidity, solar radiation (Photosynthetically Active Radiation, PAR), UV(A+B)-82 

radiation and precipitation. Climate data were recorded from both sites over 2 y, from April 2012 - 83 

March 2014 at site Almeria, and from August 2012 - July 2014 at site Hochtor. Air temperature and 84 

relative humidity were measured 1.5 m above ground, and solar radiation at 2 m above ground. The 85 

snow cover was estimated from the length of time the various sensors were inactive. Mean (± standard 86 

deviation) values were calculated for summer and winter air temperature, humidity, PAR and UVA and 87 

UVB combined radiation. Additionally maximum and minimum temperature, and maximum UV and 88 

PAR radiation were extracted from the dataset. 89 

Thallus morphology and anatomy 90 

Thickness. The thicknesses of the lichen thalli, the epinecral layer, the photobiont layer and the 91 

medulla were measured on freezing microtome sections, n= 400 for the photobiont layer and medulla 92 

measurements and n= 100 for the epinecral layer measurements from each site, using the AxioVision 93 

software (Carl Zeiss, Jena, Germany). To visualize thallus internal relationships between photo- and 94 

mycobiont, the ratio between the photobiont layer and medulla was calculated.  95 

Specific thallus area. To calculate the specific thallus area (STA, mm² mg
-1

) thallus size was first 96 

determined by binocular microscopy using the above mentioned software. A standard procedure was 97 

used to delineate the extent of each lichen thallus. The lichen thalli were wetted to ensure maximum 98 

surface area, placed on scale paper and photographed. The corresponding dry masses (DM) of these 99 

thalli were determined by weighing after 3 d of oven drying at 60°C (n=20).  100 

Specific thallus mass. This parameter was emphasized by Kershaw (1985) as an important lichen 101 

parameter for water loss and water uptake and is the inverse equivalent of STA (see above).  102 
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Hydrological traits 103 

Drying rate. Photosynthetic activity was monitored by measuring the efficiency of PSII 104 

photochemistry using an imaging-PAM chlorophyll fluorometer (Heinz Walz, GmbH, Effeltrich, 105 

Germany). Specimens of roughly the same size (± 10 mm²), which had been submerged in water 106 

overnight, were first weighed, then placed in a sealed plastic chamber on a wire net over a saturated 107 

NaCl solution which maintained a level of humidity of 75% rH equivalent to a water potential of -37 108 

MPa at room temperature (Pardow & Lakatos 2013). Initially the maximum quantum yield of PSII 109 

Fv/Fm of the hydrated and dark adapted (30 min) samples was measured as a reference. Subsequently, 110 

short saturation pulses were applied every 2 minutes to determine the fluorescence parameters for 111 

calculating PSII yield (Y= Fv/Fm). The time was measured until a threshold of 0.2 PSII yield was 112 

reached for n=18 replicates (3 thalli per chamber). To determine the absolute water loss during the 113 

measurement, samples were weighed again, directly after the measurement. Drying rate was 114 

calculated, and expressed as the time need for 1 µl of water to evaporate from one mm² of thallus  115 

(min µl-1 mm-1).  116 

Water uptake. To ensure full water saturation prior to weighing, the samples were submerged in 117 

distilled water for 30 min. Excessive water and droplets were carefully shaken off before measurement 118 

of maximum wet mass (WMmax). The corresponding dry mass (DM) of these thalli was determined by 119 

weighing after 3 d at 60°C. The maximum water uptake relative to the thallus specific dry mass of the 120 

samples (n=36) was calculated as WMmax – DM/ DM (Pérez 1997). 121 

Repellency. To measure water repellency/hydrophobicity of individual lichen thalli, the water drop 122 

penetration time (WDPT) was measured for n= 30 replicates. The WDPT test consists of placing a 123 

drop of water on the surface of the epinecral layer and measuring the time until complete absorption 124 

occurs. This is a commonly used test because of its simplicity (Letey et al. 2000) and the value of 125 

information it provides, as it was considered to be the most indicative and sensitive way for the 126 

hydrological consequences of water repellency to be investigated (Doerr 1998, Leelamanie et al. 127 

2008).  128 
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Optimum water content. CO2 gas exchange measurements were conducted under controlled laboratory 129 

conditions using a portable mini cuvette system (GFS 3000, Walz Company, Effeltrich, Germany). 130 

The response of net photosynthesis (NP) and dark respiration (DR) to thallus water content (WC) was 131 

determined for three replicates (each replicate was composed of about 20 individual squamules) from 132 

each of the sites. Complete drying-out cycles (from water saturated to air dry thalli) were measured at 133 

750 µmol photons m-2 s-1 (saturating light), ambient CO2, at 17°C (which is within the optimal 134 

temperature range for CO2-gas exchange of this species). Samples were weighed between each 135 

measurement and thallus water content (WC) was later calculated as a percentage of dry mass. Dry 136 

mass was determined after five days in a desiccator over silica gel. Ninety percent of maximum net 137 

photosynthesis was considered to be a reasonable estimate for optimal water content.  138 

Water holding capacity. Water-holding capacity (WHC) was calculated by: saturated wet mass – dry 139 

mass (mg) / thallus area (cm-²) after shaking surplus water off the lichen thallus. The corresponding 140 

dry mass (DM) of these thalli (n=20) were determined by weighing after drying for 3 d at 60°C. 141 

Thallus area was measured as described above. 142 

Statistics 143 

To determine differences between the lichens anatomical features and the climate of the two sites 144 

student’s t-tests were used (Statistica 10, Stat soft). All data was normally distributed. Significance 145 

level was defined at P < 0.05.  146 

Results 147 

Climate measurements 148 

The data (Table 1) demonstrate the pronounced differences in temperature, humidity and precipitation 149 

between the sites, and also within the sites based on seasonality. In Almeria it was significantly 150 

warmer, drier and brighter than at the alpine site Hochtor. However in site Hochtor the growing season 151 

only lasted about 3 months in a year, due to the persistent snow cover.  152 

Thallus morphology and anatomy 153 
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Thalli from Almeria had thicker epinecral layers, but only half the medulla thickness compared to 154 

samples from Hochtor (Fig. 1E and F; Table 2). The photobiont layer showed no difference between 155 

the sites, therefore, the photobiont layer to the medulla-ratio of the thalli from site Almeria was twice 156 

as high. This indicates significant differences in the internal structure of the thalli between the 157 

populations. STA was also higher for samples from site Almeria (Table 2), indicating that these thalli 158 

can support relatively large areas despite their reduced thallus matter. Corresponding to this finding, 159 

STM was significantly higher for samples from site Hochtor, indicating that these samples are thicker 160 

than those from site Almeria. 161 

Hydrological traits 162 

Both populations had similar water holding capacities per area (Table 2) and showed some common 163 

drying characteristics, independent of sampling site and thallus size (Fig. 2). For example, the initial 164 

activity of PS II was similar, with high yields of PSII at ca. 0.6 (blue color, Fig. 2). Additionally, these 165 

levels of activity remained relatively stable for certain amounts of time independent of thallus size 166 

(around 0.6). As soon as a threshold of desiccation was reached, the actual drying event occurred 167 

quickly, and no fluorescence signal could be detected shortly after this. In contrast to these common 168 

features, the actual drying rate was different between the two populations. Thalli from site Almeria 169 

dried six-times slower than those from site Hochtor (Table 3, Fig. 2). Additionally, P. decipiens 170 

specimens from site Almeria took up water faster (1.2 ± 0.27 sec compared to 168.4 ± 15.8 sec for 171 

samples from site Hochtor) and contained more water per dry mass than those from site Hochtor 172 

(Table 2). The optimum WC for CO2 exchange extended over a significantly narrower range, (109-156 173 

% DM) for samples from site Almeria than for samples from site Hochtor (131-195 % DM). 174 

Discussion 175 

In the present study we have demonstrated distinct differences between two populations of the lichen 176 

species P. decipiens, derived from climatically contrasting habitats. Morpho-anatomical differences 177 

appear to be reflected in differences in functional water relations and diffusion properties as a result of 178 

local water availability. We have identified eco-physiological and morphological mechanisms that 179 

underlie the high variability in P. decipiens that determine its ecological fitness in a particular habitat.  180 
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The most striking difference between the two populations is water gain. Considering the differing STA 181 

and the maximum water uptake relative to the thallus specific dry mass, thalli from both sites have the 182 

same water holding capacity on an area basis (WHC in Table 2). This indicates that, not only surface 183 

area, but also thallus internal structure must be studied to understanding the drying processes in 184 

lichens. During the actual drying process we need to consider the amount of water in the thallus, based 185 

on thallus area. The resulting calculation shows that drying from optimal water content to completely 186 

desiccated lichen thalli takes 2.5 minutes mm
-2

 for thalli from Hochtor, but 15 minutes mm
-2

 for 187 

Almeria thalli. This conclusion is supported by the chlorophyll florescence results, which show a 188 

much slower rate of decrease in activity in Almeria thalli (Fig. 2).  189 

Samples from the dry site Almeria show both improved water uptake and reduced water loss. A 190 

reduction of water loss in lichens seems remarkable, because lichens, as poikilohydric organisms are 191 

known for their passive water control and unregulated loss of water over the whole thallus surface. 192 

Nevertheless, Beckett (1995) showed that lichens from dry habitats seem to make better use of their 193 

water, by maintaining turgor down to low relative water contents. The reduced rates of water loss 194 

found here, may be the result of increased diffusive resistance caused by the  thicker epinecral layer. 195 

This layer is often described as amorphous, and is composed of decomposing hyphae with indistinct 196 

cell lumina; it forms a very dense layer that can act as a barrier to water loss, more so than the upper 197 

cortex. In the revised generic concept of Parmelioid lichens (Crespo et al. 2010) a pored epicortex is 198 

an important diagnostic feature beside molecular, morphological and chemical evidence. The 199 

epicortex proabably provides an extra layer of protection against evaporation. A thick epinecral layer, 200 

as present in the samples from the dry site Almeria may therefore account for such a reduction in 201 

water loss. Nevertheless, developing a thick epinecral layer also seems contradictory to improved 202 

water gain, because it is also reported to have hydrophobic properties (Lakatos et al. 2006). The 203 

occurrence of hydrophobins, proteins unique to mycelial fungi, has been suggested to be important for 204 

the survival of lichens (Wessels 2000). According to Honegger (1991), a hydrophobic lining of gas 205 

spaces allows efficient apoplastic transport of water and solutes between the symbionts, and permits 206 

optimal gas exchange during wet periods. Therefore, very low water repellency of the samples from 207 

site Almeria is unsurprising. The suggested explanation for this result derives from the structure of the 208 
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epinecral layer itself and how this influences the lichen surface (Fig. 1C and D). In dried thalli, the 209 

epinecral layer has open cracks (Fig. 1E), thus increasing the surface area and facilitating water uptake 210 

by cohesion and adhesion, leading liquid water towards the photobiont layer (Fig. 1E and F). With 211 

WHCshaking being close to 50 mg H2O cm
-2

 (Table 2, 10 mg H2O cm
–2

 equates to 0.1 mm dew or rain) 212 

these lichens use the rare rain evens more often than dewfall (Gauslaa et al. 2014). Both findings 213 

support the explanation that a functional role of the epinecral layer is to influence the lichen 214 

hydrology. To our knowledge, this has not been previously described. The function of the epinecral 215 

layer is usually suggested to be protection  against high light stress (Büdel & Lange 1994, Büdel et al. 216 

1997, Rikkinen 1995, Kappen et al. 1998, Dietz et al. 2000). For chlorolichens, drying combined with 217 

light exposure can be particularly harmful (Gauslaa et al. 2012) and it was suggested that the ability to 218 

recover, correlates positively with increasing species-specific water holding capacities (WHC). In 219 

Almeria, light intensities and UV-radiation are much higher throughout the year (Table 1), and in this 220 

population the thicker epinecral layer is therefore necessary to prevent light damage. In the Hochtor 221 

site, where light intensity is less and exposure time to both PAR and UV are shortened due to snow 222 

cover, such protection would not be required or beneficial to the lichen.  223 

In the wet site of Hochtor, the lichens experience a different set of stresses. Water saturation for many 224 

hours a day may result in negative carbon gain for two reasons. First high respiration rates during the 225 

night and under the snow cover can influence carbon balance negatively, and second CO2 diffusion 226 

resistance is high in water supra-saturated thalli, thus reducing the substrate for photosynthesis 227 

(Cowan et al. 1992). The high WHCshaking values indicate that these lichens are more often exposed to 228 

rain events of about 40 mm precipitation (Gauslaa et al. 2014), which underlines their frequent water 229 

saturation. For lichens, it is essential to minimize periods of water supra-saturation. Indeed, the 230 

functional aspects that we report here for the lichens from the wet site Hochtor are fast desiccation 231 

times, high hydrophobicity, low maximum water uptake relative to the thallus specific dry weight and 232 

a broad range of thallus water contents for optimal photosynthesis. All of these may be explained by 233 

specific thallus anatomy, which includes a very thick medulla layer and is best quantified by the high 234 

STM values (Table 2). The medulla is the fungal zone in the lichen thallus, composed of hyphae, with 235 

cell walls often incrusted with crystalline secondary metabolites. It was shown that lichen substances 236 
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did not maintain the water-free diffusion pathways (Lange et al. 1997) and the authors suggested that 237 

these pathways are rather maintained by structural changes. Together with numerous hydrophobic air 238 

spaces in the medulla, supra-saturation with water is minimized or even avoided (Lange et al. 1993). 239 

The morpho-anatomical adjustments leading to water repellency of the upper layers involve reduced 240 

STA for the samples from site Hochtor. The parameter of STA is analogous to specific leaf area 241 

(SLA), in higher plants, which can yield information about life strategies. Species with low SLA 242 

conserve acquired resources, due to their large dry matter content, high concentration of cell walls and 243 

secondary metabolites, and high leaf and root longevity (Marron et al. 2003). By applying these 244 

features to lichens, the lower the STA, the lower the fitness and the more lichen material is needed to 245 

support the same surface area. Our results show higher STA values for lichens from the dry site 246 

Almeria, which means that these lichens have a higher fitness. One conclusion from this result might 247 

be that anatomical and functional adjustments within P. decipiens are more easily made towards 248 

dryness and high light stresses than towards water supra-saturation, a common phenomenon in the wet 249 

site Hochtor. This conclusion may be of general interest towards regions with climate change 250 

predictions that include increased flood and heavy rain risks (IPCC 2012), as the conditions are 251 

expected to occur in the future in  many areas that sustain natural BSCs covers. Accumulations of such 252 

events may influence the natural BSC more severely than increasing drought.  253 

This study suggests that two populations show variations in morpho-anatomical traits that result from 254 

their native environments climatic differences. These differences could result from ecotypic variation 255 

or phenotypic plasticity. Increasingly, recent studies on plant plasticity describe not only growth rates 256 

documentation and morphological parameters, but also  functional aspects of plasticity. The plasticity 257 

of functional traits (both long- and short term) can contribute to the ability of species to occupy 258 

diverse and variable habitats in nature (Sultan et al. 1998). Phenotypic plasticity plays an important 259 

role in community ecology because it contributes to the ability of species to withstand environmental 260 

changes, such as those caused by human disturbance. The timescale of such changes is often too short 261 

for an evolutionary response, thus species that lack sufficient plasticity might be at risk of altered 262 

reproduction, degradation or extinction (Sultan 2000). On the other hand, ecotypic variation would 263 

result in the two populations also being different on a genetic level. This would suggest that the 264 
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observed differences are not due to the species plasticity and could therefore be at risk to climate 265 

change and habitat loss. This study has focused on purely morphological and physiological 266 

characteristics of the lichen P. decipiens. In order to reveal a complete picture of the variation of this 267 

important soil crust lichen molecular analysis has to be included. The next step is to investigate the 268 

genetic diversity and acclimation potential of both the algal and fungal partners of P. decipiens from 269 

the two populations at the climatically distinct sites. 270 
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Figure captions: 392 

Figure 1: Characteristics of Psora decipiens. A) Study site Almeria overview, B) study site Hochtor 393 

overview; C) natural appearance at study site Almeria (photo: Martin Westberg); D) natural 394 

appearance at the study site Hochtor; E) cross section from site Almeria with the thick cracked 395 

(arrows) epinecral layer; F) cross section from site Hochtor with a continuous epinecral layer and a 396 

thick medulla including a thick photobiont layer. White scale bars indicate 1 cm, black bars indicate 397 

20µm. 398 

Figure 2: Dehydration kinetics of Psora decipiens. False color chlorophyll fluorescence images of the 399 

effective quantum yield (Y) of photosystem II distribution over three thalli from site Almeria (upper 400 
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row) and site Hochtor (lower row), obtained using an Imaging PAM (Walz GmbH, Effeltrich, 401 

Germany). Yield intensity is color coded covering a range from 1-0 with red indicating very high 402 

values and violet low values. Red flags indicate exact Yield values at a chosen area of interest in the 403 

picture. Pictures where taken every 2 minutes. 404 

 405 
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Characteristics of Psora decipiens. A) Study site Almeria overview, B) study site Hochtor overview; C) 
natural appearance at study site Almeria (photo: Martin Westberg); D) natural appearance at the study site 
Hochtor; E) cross section from site Almeria with the thick cracked (arrows) epinecral layer; F) cross section 
from site Hochtor with a continuous epinecral layer and a thick medulla including a thick photobiont layer. 

White scale bars indicate 1 cm, black bars indicate 20µm.  
 

188x211mm (300 x 300 DPI)  
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Dehydration kinetics of Psora decipiens. False color chlorophyll fluorescence images of the effective quantum 
yield (Y) of photosystem II distribution over three thalli from site Almeria (upper row) and site Hochtor 
(lower row), obtained using an Imaging PAM (Walz GmbH, Effeltrich, Germany). Yield intensity is color 
coded covering a range from 1-0 with red indicating very high values and violet low values. Red flags 

indicate exact Yield values at a chosen area of interest in the picture. Pictures where taken every 2 minutes. 
 

297x67mm (300 x 300 DPI)  
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Table 1: Climate data at the study sites. Climate data are differentiated by summer and winter for both 

investigation sites. Summer: April-September, Winter: October-March, Almeria: April 2012-March 

2014, Hochtor: August 2012-July 2014. Shown are mean values with standard deviation where 

appropriate, maximum and minimum values recorded across the measuring period, average rainfall per 
season and snow cover duration. PAR and UV are based on daily average and maximum values. a: 

values are significantly different within the sites (summer vs. winter), b: values are significantly 

different between sites (eg. Site Almeria summer vs. site Hochtor summer). 
 

 
Site Almeria Site Hochtor 

Parameter Summer  Winter       Summer Winter 

Air temp. (°C)          Average 23.0 ± 6.6ab
 

13.6 ± 5.8ab
 

2.0 ± 4.6ab
 

-3.7 ± 3.0ab
 

                                 Max 43.8 34.8 19.86 14.6 

                                 Min 2.8 0.0 -7.5 -18.6 

Humidity. (%)          Average 51.4 ± 20.5b
 

60.6 ± 19.7b
 

92.4 ± 12.3b
 

93.1 ± 9.5b
 

PAR (µmol m-² s-1)    Average 962.5ab
 

619.8ab
 

441.8ab
 

152.8ab
 

                                  Max 2650 2406 2680 1862 

UVA+B (µmol m-² s-1) Average 

                                                                 
89.69ab

 

60.6ab
 

77.8ab
 

33.8ab
 

                                  Max 346.9 266.8 384.2 244.6 

Rain (mm)               Average 25.5ab
 

91.8ab
 

558.3ab
 

75.45ab
 

Snow cover              Year None None 3 months 6 months 
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Table 2: Comparison of anatomical and hydrological characteristics of lichen thalli deriving from the 

wet exposed site Hochtor and the dry site Almeria. Shown are mean values with standard deviation 

and significance levels from t-tests. 

 

Thallus morphology 
Significance of difference between dry 

and wet exposed thalli 

parameter Site Almeria Site Hochtor t df p 

 

Epinecral layer 

thickness (µm) 

 

92.2 ± 18.8 70.1 ± 9.8 7.3 98 0.000 

Photobiont 

layer thickness 

(µm) 

 

91.5 ± 16.2 93.0 ± 20.2 -0.7 398 0.4 

Medulla 
thickness (µm) 

 

102.4 ± 38.6 224.6 ± 59.4 -24.4 398 0.000 

Photobiont/ 
Medulla ratio 

 

0.89 0.41    

Specific thallus 
area (mm-² mg) 

 

4.7 ± 0.9 2.9 ± 0.3 5.6 19 0.005 

Specific thallus 

mass (mg cm-²) 
22.3 ± 3.8 36.7 ±7.6 5.6 19 0.005 

Thallus hydrology  

 

Maximum 

water uptake 

relative to the 

thallus specific 

dry weight (mg 

H2O/mg dry 

weight) 

 

2.1 ± 0.7 1.4 ± 0.1 -4.1 34 0.000 

WC opt (%) 

 
109.7 -156.1 131.8 – 195.4  2 0.03 

WHC (mg H20 

cm
-2

) 

 

46.4 ± 12.8 51.6 ± 9.9 -2.5 19 0.1 

WDPT (sec) 

 
1.2 ± 0.3 168.4 ± 15.8 -4.1 28 0.000 

Drying rate 

(min µl
-1 

mm
-2

) 
34.1 ± 28.8 5.3 ± 4.3 -4.2 34 0.000 
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