44 research outputs found

    Complexity and Persistence of Price Time Series of the European Electricity Spot Market

    Get PDF
    The large variability of renewable power sources is a central challenge in the transition to a sustainable energy system. Electricity markets are central for the coordination of electric power generation. These markets rely evermore on short-term trading to facilitate the balancing of power generation and demand and to enable systems integration of small producers. Electricity prices in these spot markets show pronounced fluctuations, featuring extreme peaks as well as occasional negative prices. In this article, we analyze electricity price time series from the European Power Exchange market, in particular the hourly day-ahead, hourly intraday, and 15-min intraday market prices. We quantify the fluctuations, correlations, and extreme events and reveal different time scales in the dynamics of the market. The short-term fluctuations show remarkably different characteristics for time scales below and above 12 h. Fluctuations are strongly correlated and persistent below 12 h, which contributes to extreme price events and a strong multifractal behavior. On longer time scales, they get anticorrelated and price time series revert to their mean, witnessed by a stark decrease of the Hurst coefficient after 12 h. The long-term behavior is strongly influenced by the evolution of a large-scale weather pattern with a typical time scale of four days. We elucidate this dependence in detail using a classification into circulation weather types. The separation in time scales enables a superstatistical treatment, which confirms the characteristic time scale of four days, and motivates the use of q-Gaussian distributions as the best fit to the empiric distribution of electricity prices

    Genetic and Evolutionary Analyses of the Human Bone Morphogenetic Protein Receptor 2 (BMPR2) in the Pathophysiology of Obesity

    Get PDF
    Human bone morphogenetic protein receptor 2 (BMPR2) is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity.Evolutionary analyses (dN/dS, Fst, iHS) were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs) were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined.The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and <30 kg/m²) and 80 obese (BMI>30 kg/m²) compared with 44 lean subjects (BMI< 25 kg/m²) (P<0.001). In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118) were associated with obesity (adjusted P<0.05). Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01) on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue.Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Reactive transport codes for subsurface environmental simulation

    Full text link
    corecore