258 research outputs found

    Nonparametric estimation of effect heterogeneity in rare events meta-analysis: Bivariate, discrete mixture model

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordAbstract: Meta-analysis provides an integrated analysis and summary of the effects observed in k independent studies. The conventional analysis proceeds by first calculating a study-specific effect estimate, and then provides further analysis on the basis of the available k independent effect estimates associated with their uncertainty measures. Here we consider a setting where counts of events are available from k independent studies for a treatment and a control group. We suggest to model this situation with a study-specific Poisson regression model, and allow the study-specific parameters of the Poisson model to arise from a nonparametric mixture model. This approach then allows the estimation of the heterogeneity variance of the effect measure of interest in a nonparametric manner. A case study is used to illustrate the methodology throughout the paper

    Recent developments in life and social science applications of capture–recapture methods.

    Get PDF
    Over the last 20 years capture-recapture methods have experienced important developments, in particular in their applications in the life and social sciences. It appears appropriate to take a closer look at some of these developments. A recent conference entitled Recent Developments in Capture-Recapture Methods and their Applications was held in 2007 at The University of Reading. A special issue focusing on applications mainly in the Biological Sciences appeared elsewhere (Böhning 2008), whereas in this special topic we would like to focus more on life and social science applications. The capture-recapture or mark-and-recapture methodology goes back to the Biological/Ecological Sciences with the work of Lincoln and Petersen. About one hundred and ten years ago Petersen (1896) published his landmark paper suggesting what later became known as the Lincoln-Petersen estimator, since it was also independently developed b

    Rationality of quotients by linear actions of affine groups

    Full text link
    Let G be the (special) affine group, semidirect product of SL_n and C^n. In this paper we study the representation theory of G and in particular the question of rationality for V/G where V is a generically free G-representation. We show that the answer to this question is positive if the dimension of V is sufficiently large and V is indecomposable. We have a more precise theorem if V is a two-step extension 0 -> S -> V -> Q -> 0 with S, Q completely reducible.Comment: 18 pages; dedicated to Fabrizio Catanese on the occasion of his 60th birthda

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure

    Combinatorial nuclear level density by a Monte Carlo method

    Full text link
    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states, and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations.Comment: 30 pages, LaTex, 7 figures (6 Postscript figures included). Fig. 6 upon request to the autho

    Regression analysis with categorized regression calibrated exposure: some interesting findings

    Get PDF
    BACKGROUND: Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile) scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. METHODS: We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC). RESULTS: In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. CONCLUSION: Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a percentile scale. Relating back to the original scale of the exposure solves the problem. The conclusion regards all regression models

    A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems

    Get PDF
    Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species\u27 interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
    • …
    corecore