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Abstract—Meta-analysis provides an integrated analysis and summary of the effects observed
in k independent studies. The conventional analysis proceeds by first calculating a study-specific
effect estimate, and then provides further analysis on the basis of the available k independent
effect estimates associated with their uncertainty measures. Here we consider a setting where
counts of events are available from k independent studies for a treatment and a control group.
We suggest to model this situation with a study-specific Poisson regression model, and allow the
study-specific parameters of the Poisson model to arise from a nonparametric mixture model.
This approach then allows the estimation of the heterogeneity variance of the effect measure
of interest in a nonparametric manner. A case study is used to illustrate the methodology
throughout the paper.
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1. INTRODUCTION
Meta-analyses are used to analyze and integrate the results of several studies investigating

the same research question, providing a cheaper and more powerful alternative to a large new
single study. For a general introduction into meta-analysis design refer to Schulze et al. (2003) or
Borenstein et al. (2009), for example. The following special meta-analytic setting was considered
in Böhning et al. (2015), and shall be the focus of this paper. In k independent studies, counts
of events are observed in an intervention and control group. This setting can be described by a
count random variable Yij . The index i indicates the study i for i = 1, 2, ..., k, where k denotes the
number of available studies. Also, j = 1 denotes an intervention group and j = 0 a control group.
Yij represents the number of events in study i and group j, whereas Tij denotes the person-time
at risk in study i and group j. The latter is considered as non-random and reduces to the number
at risk, nij , if all members in study i share the same person-time. Furthermore, conditional upon
study i we have that E(Yij) = λijTij , where λij denotes the event occurrence risk in study i and
group j. We are interested in settings where the probability of no events is large, so that often low
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frequency counts such as 0, 1, or 2 are observed. In this situation, the Poisson assumption comes
into play and assumes that

Yij ∼ Po(λijTij), (1)

for study i and group j, where Po(θ) denotes the Poisson distribution with the density e−θθy/y!
for count y = 0, 1, 2, .... Here, the mean and variance of Yij are E(Yij) = λijTij = Var(Yij).

We emphasise that (1) is conditional upon study i and treatment group j, and as such uses a
study-group specific parameter λij . Hence, it is a reasonable but untestable assumption as we only
have one count Yij observed per study and group combination. In addition, the count Yij will often
be very small, to the extreme of having no events in one or both groups.

The major objective of this work is to consider the frequently used log-linear model

logE(Yij) = log λij + log Tij = αi + βi × j + log Tij

and to model the (latent) distribution of the treatment effect βi. In contrast to the standard mixed
model approach, which takes βi ∼ N(β, σ2β), we will present a nonparametric approach which leaves
the distribution of βi unspecified.

The paper is organised as follows. Section 2 contains a case study which will help the reader
to understand the setting and its issues. Section 3 presents the modelling, followed by Section 4
which discusses how effect heterogeneity can be detected and estimated. Section 5 illustrates the
modelling and diagnosis of heterogeneity for the case study, before the paper ends in Section 6 with
a short discussion.

2. CASE STUDY
In this work, we used a systematic review of the effectiveness of prophylactic antibiotic treatment

on infectious complications in women undergoing caesarean delivery (Smaill and Hofmeyr, 2002;
Cooper et al., 2003). The data are provided in Table 1. They included 61 independent studies with
counts of occurrence of wound infection as outcome in women undergoing caesarean delivery. The
intervention group used prophylactic antibiotics, whereas the control group had no prophylactic
antibiotics (placebo). Many of the component studies were small in size, with average sample sizes
being 80 persons per trial in the treatment arm and 63 persons per trial in the control arm. The
occurrence of wound infection was observed relatively rarely and there were zero events present in
each of the two arms. For studies with no event in one (single-zero) or both (double-zero) treatment
arms, the study-specific risk ratio (or relative risk) R̂Ri = Yi1/Ti1

Yi0/Ti0
and its associated variance estimate

1/Yi0 + 1/Yi1 are undefined since there exist some Yij equal to zero. As a result of this, the double-
or single-zero studies would need to be excluded prior to conducting this analysis.

Table 1: Meta-analytic data on prophylactic antibiotics in cae-
sarean section

Treatment Placebo

Report, Year Events Total Events Total

Adeleye et al., 1981 11 58 14 48

Bibi et al., 1994 4 133 28 136

Chan et al., 1989 27 299 12 101

Conover et al., 1984 2 68 1 56

Cormier et al., 1989 5 55 8 55

Dashow et al., 1986 3 100 0 33

Dashow et al., 1986 4 183 3 44

Continued on next page
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Table 1 Continued

Treatment Placebo

Report, Year Events Total Events Total

De Boer et al., 1989 1 11 5 17

De Boer et al., 1989 10 80 21 74

Dillon et al., 1981 0 46 4 55

Duff et al., 1980 0 26 1 31

Duff et al., 1982 0 42 0 40

Elliot et al., 1986 0 119 1 39

Engel et al., 1986 1 50 9 50

Fugere et al., 1983 2 60 6 30

Gall, 1979 1 46 1 49

Gerstner et al., 1980 3 53 9 50

Gibbs et al., 1972 0 33 4 28

Gibbs et al., 1973 0 34 6 34

Gibbs et al., 1981 0 50 2 50

Gordon et al., 1979 0 78 1 36

Hager et al., 1983 1 43 1 47

Hagglund et al., 1989 0 80 3 80

Harger et al., 1981 2 196 14 190

Hawrylyshyn et al., 1983 2 124 2 58

Ismail et al., 1990 2 74 8 78

Jakobi et al., 1994 4 167 5 140

Karhunen et al., 1985 2 75 9 77

Kreutner et al., 1978 0 48 2 49

Kristensen et al., 1990 0 102 1 99

Lapas et al., 1989 1 50 10 50

Leonetti et al., 1989 0 100 1 50

Levin et al., 1983 0 85 3 43

Lewis et al., 1990 1 36 1 25

Lewis et al., 1990 2 76 4 75

Mahomed et al., 1988 12 115 15 117

Mallaret et al., 1990 6 136 16 130

McCowan et al., 1980 9 35 7 38

Miller et al., 1968 13 150 23 150

Continued on next page
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Table 1 Continued

Treatment Placebo

Report, Year Events Total Events Total

Moodley et al., 1981 2 40 4 20

Moro et al., 1974 0 74 2 74

Padilla et al., 1983 0 34 5 37

Phelan et al., 1979 2 61 2 61

Polk et al., 1982 3 146 9 132

Rehu et al., 1980 4 88 4 40

Roex et al., 1986 1 64 7 65

Ross et al., 1984 7 57 7 58

Rothbard et al., 1975 0 16 1 16

Rothbard et al., 1975 2 31 6 37

Ruiz-Moreno et al., 1991 1 50 4 50

Saltzman et al., 1985 1 50 2 49

Schedvins et al., 1986 2 26 0 27

Stage et al., 1983 3 133 12 66

Stiver et al., 1983 6 244 17 117

Tully et al., 1983 1 52 2 61

Tzingounis et al., 1982 2 46 4 50

Weissberg et al., 1971 0 40 3 40

Wong et al., 1978 2 48 3 45

Work et al., 1977 3 40 1 40

Yip et al., 1997 1 160 1 160

Young et al., 1983 1 50 4 50

The results of a meta-analysis on the risk ratio based on the data on prophylactic antibiotics
in caesarean treatment is presented by a forest plot in Figure 1 (one study is excluded due to the
above mentioned issue of zero count occurrence). It can be concluded that a woman undergoing
caesarean delivery appears to have a lower risk for infectious complications if in the prophylactic
antibiotic treatment group compared to being in the placebo or no prophylactic antibiotic treatment
group. One of the primary questions in a meta-analysis of effects is whether there is homogeneity of
effect. In the next section we will present a modelling approach that can help answer this question.

3. THE LOG-LINEAR MODEL WITH HETEROGENEITY
The modelling approach that we are presenting for heterogeneity estimation is detailed as follows.

Given the Poisson model (1) we may re-parameterise the mean as follows:

logE(Yij) = log λij + log Tij = αi + βi × j + log Tij .

This re-parameterisation has the benefit that the log-risk ratio in the i-th study is given by
βi and corresponds to logRRi. In addition, heterogeneity can be now separated into baseline
heterogeneity – the variability in the intercept αi – and the heterogeneity in the effect measure –
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Figure 1. Forest plot of prophylactic antibiotics in caesarean section
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the variability in the slope βi. The scenario of no effect homogeneity is characterised by βi = 0
for all studies i = 1, 2, ..., k. To model heterogeneity, the typical generalised liner mixed model
approach takes αi ∼ N(α, σ2α) and βi ∼ N(β, σ2β). Here, instead of assuming a normal (or other
parametric) distribution, we leave the distribution of (αi, βi) unspecified. From the foundations of
nonparametric maximum likelihood estimation, the maximum likelihood estimator maximising the
mixture log-likelihood with mixing distribution Q

`(Q) =
∑
i,j

log

∫
p(yij ; exp(αi + βi × j + log Tij))Q(dαi, dβi) (2)

is always discrete (Lindsay, 1982, 1995). Here p(y;λ) = exp(−λ)λy/y! is the Poisson discrete mass
function for y = 0, 1, ... and λ > 0. Hence, there is no limitation of generality if we replace (2) by

`(Q) =
∑
i,j

log
S∑
s=1

p(yij ; exp(αs + βs × j + log Tij))qs. (3)

The log-likelihood (3) is evidently a discrete mixture log-likelihood with weights q1, q2, ..., qS being
positive and summing up to 1. Unfortunately, it is not known which values for S should be chosen
however. This is known as the number of components problem. A typical solution is to start with
S = 1 and then sequentially increase the number of components by one until no further increase in
the log-likelihood is detected. Specifically, for a given value of S, the log-likelihood (3) is maximised
using the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007). More details on
computational and algorithmic approaches for mixture likelihood problems are given on Böhning
(2000).

We will denote the maximum likelihood estimate of the parameters αs, βs and qs for s = 1, 2, ..., S
as

Q̂ =


α̂1 · · · α̂S
β̂1 · · · β̂S
q̂1 · · · q̂S

 .

Note that Q̂ is a mixing distribution jointly on the intercept α and the slope (log-risk ratio) β.
Having the maximum likelihood estimate available, we are then able to give a nonparametric
estimate of the heterogeneity variance of the log-risk ratio as

τ̂2 =
S∑
s=1

(β̂s − β̄)2q̂s,

where β̄ =
∑S

s=1 q̂sβ̂s. This variance is of particular interest in meta-analysis as its size indicates
the amount of heterogeneity in effect size across studies. Of course, other variances such as the
baseline heterogeneity variance in the αs can also be considered.

4. DIAGNOSING HETEROGENEITY
Our interest lies in detecting heterogeneity in the log-risk ratio β. The issue of broad interest

relates to the question "Is there homogeneity of relative risk across studies or not?" To investigate
this question we first focus on the general model M1.

S1∑
s=1

p(yij ; exp(αs + βs × j + log Tij))qs.

Note that this model has baseline heterogeneity (αs) and effect heterogeneity (βs). This model
needs to be contrasted to the model allowing for baseline heterogeneity but constraining on effect
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Table 2. Model evaluation under heterogeneity and homogeneity of effect

S log-likelihood AIC BIC τ̂2 β̄

bivariate mixture model M1

1 -359.2 722.5 726.8 0 -0.96

2 -289.9 589.7 600.5 0.04 -0.77

3 -284.3 584.6 601.8 0.99 -1.02

4 -283.4 588.8 612.6 1.03 -1.02

univariate mixture model M0 keeping βs = β

1 -359.2 722.5 726.8 - -0.96

2 -291.7 591.3 599.9 - -0.64

3 -289.9 591.8 604.8 - -0.66

4 -289.9 595.8 613.1 - -0.66

homogeneity. This alternate model, denoted as M0, can be written as
S0∑
s=1

p(yij ; exp(αs + β × j + log Tij))qs.

We emphasise here that these models are not necessarily nested, for example if S0 > S1. For
this reason we will not focus on likelihood ratio testing, but rather concentrate on model selection
criteria such as Akaike information criterion (AIC) defined as −2`(Q̂) + 2p and Bayesian information
criterion (BIC) defined as−2`(Q̂) + p log k, where p are the number of parameters in the model under
consideration, k is the number of studies and `(Q̂) is the maximised mixture log-likelihood under the
model of consideration. If model M1 is considered there are p = 3S1 − 1 independent parameters
due to the constraint

∑S1
s=1 αs = 1. If model M0 is considered there are p = 2S0 independent

parameters. The model is chosen according to the smallest value of AIC and BIC. If both criteria
lead to substantial contradictory choices then we will put more focus on the BIC, as the AIC is
considered less reliable in choosing the number of components (Naik et al., 2007; Ray and Lindsay,
2008).

5. CASE STUDY (CONTINUED)

We now continue with the discussion of the case study, where our interest is in the structure and
form of the heterogeneity in the log-risk ratio across studies. In Table 2, we consider in its upper
subtable the modelling of the mixture distribution of the bivariate intercept and slope parameters
(αs, βs), while in the lower subtable we consider only heterogeneity in the baseline parameter αs
while keeping the slope parameter homogeneous. We can see from Table 2 that the best model for
the bivariate mixture model M1 is given by S = 2 (according to the BIC) or S = 3 (according to
the AIC) components, respectively. Given the arguments in the previous section to follow the BIC
in inconclusive cases, ultimately we go with S = 2 as this is what the BIC suggests. The associated
value estimated for τ2 is τ̂2 = 0.04.

For the univariate mixture with homogeneity in the log-risk ratio, the best model has S = 2
components (both AIC and BIC agree independently). It is interesting that according to the BIC
the best model is the homogeneous risk ratio model with two component heterogeneity in the
baseline parameter. Alternatively, according to the AIC the best model is a risk ratio heterogeneity
model with 3 components. We interpret this as having here a meta-analysis with a very mild form
of effect heterogeneity.
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6. DISCUSSION AND CONCLUSIONS
It is of interest to compare our approach with a conventional, two-stage approach in meta-

analysis. In the latter, study-specific log-relative risks are computed as

R̂Ri = exp(β̂i) =
yi1/Ti1
yi0/Ti0

.

Furthermore, the observed effect measure β̂i is partitioned according to β̂i = βi + εi into a true
study effect βi of study i and a random error εi. These have variances corresponding to
Var(β̂i) = Var(βi) + Var(εi), assuming independence between random error εi and random effect βi.
Here, Var(βi) = τ2 is the heterogeneity variance and measures the variation of the true effect across
studies. Var(εi) = 1/(Yi0 + 0.5) + 1/(Yi1 + 0.5) is the study variance and measures the within-study
variance.

An example of an alternate overall or summary estimator is the so-called Mantel–Haenszel
estimator

R̂RMH =

∑
i yi1Ti0/Ti∑
i yi0Ti1/T1

,

where Ti = Ti1 + Ti0. For this average effect measure the heterogeneity measuring statistic

Q =
∑
i

wi(β̂i − β̄)2

can be considered where wi = 1/Var(β̂i) and β̄ = log R̂RMH. A normalised heterogeneity measure
is given by I2 = Q−(k−1)

Q , as suggested by Higgins and Thompson (2002). This measure reports
what proportion of the variation we detect is due to the variation of the log-relative risk across
studies. If it is 0, there is no heterogeneity and all variation is due to random error within the
studies. Alternatively, if it is 1, all variation is due to the heterogeneity of the log-relative risk
across studies. This is what can be seen in Figure 1 with an I2 = 0.071 or 7.1%, which confirms
our result of very low effect heterogeneity in this meta-analysis. The conventional two-stage meta-
analysis approach also provides an estimate of τ2, which in this case takes the value of 0.0405,
comparing favourably with the value we have derived in Table 2 using the bivariate mixture model
with S = 2. Of course, here this comparison was reasonably justified as all component studies had
large sample sizes and many studies had non-sparse events. However, 19 studies in the meta-analysis
had zero events in at least one treatment arm (so-called single-zero and double-zero studies), and in
these cases study-specific relative risks could only be computed by replacing zeros with a smoothing
constant of 0.5. This can lead to considerable bias, and as such one of the benefits of our approach
is that it avoids the use of smoothing constants.
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Appendix: STATA code
All computations were done using the package STATA16 (StataCorp 2019). In the following we

demonstrate how to fit a two-component, bivariate mixture model. Different numbers of components
can be achieved by replacing 2 with any desired number of components. The log-relative risks for the
components are -0.1581758 and -0.743582. The associated weights can be found using the command
estat lcprob which is provided at the end of the output below. y are the counts of events and
log n is the log-size of the study. treat is a binary treatment indicator with 1 denoting being in the
treatment group and 0 otherwise.

. fmm 2 : poisson y treat, exposure(logn)

Finite mixture model Number of obs = 122
Log likelihood = -307.22036

Class : 1
Response : y
Model : poisson

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
y |

treat | -.1581758 .1603739 -0.99 0.324 -.4725029 .1561514
_cons | 1.128934 .1005598 11.23 0.000 .9318403 1.326027

ln(logn) | 1 (exposure)
------------------------------------------------------------------------------

Class : 2
Response : y
Model : poisson

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
y |

treat | -.743582 .1821602 -4.08 0.000 -1.100609 -.3865546
_cons | -.2447636 .1432094 -1.71 0.087 -.5254488 .0359217

ln(logn) | 1 (exposure)
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------------------------------------------------------------------------------

. estat lcprob

Latent class marginal probabilities Number of obs = 122

--------------------------------------------------------------
| Delta-method
| Margin Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
Class |

1 | .2027119 .0486684 .1235069 .3144862
2 | .7972881 .0486684 .6855138 .8764931

--------------------------------------------------------------

The fmm module also has the option to keep certain parameters homogeneous, i.e. not to involve
them in the mixture. This can be achieved with the optional parameter coef as shown below. Here
we keep the parameter of the log-relative risk estimated constant over the components.

. fmm 2 , lcinvariant(coef) : poisson y treat, exposure(logn)

Finite mixture model Number of obs = 122
Log likelihood = -311.15859

Class : 1
Response : y
Model : poisson

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
y |

treat | -.3426311 .1499642 -2.28 0.022 -.6365555 -.0487067
_cons | 1.094218 .0881464 12.41 0.000 .9214543 1.266982

ln(logn) | 1 (exposure)
------------------------------------------------------------------------------

Class : 2
Response : y
Model : poisson

------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
y |

treat | -.3426311 .1499642 -2.28 0.022 -.6365555 -.0487067
_cons | -.5363991 .1513947 -3.54 0.000 -.8331272 -.2396709

ln(logn) | 1 (exposure)
------------------------------------------------------------------------------

A conventional two-stage meta-analysis can be accomplished by using the STATA-package metan.
The data format needs to be of the so-called a− b− c− d-type:

• a number of events in the treatment group

• b number of non-events in the treatment group

• c number of events in the control group
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• d number of non-events in the control group.

We yield the following output (the parameter random produces a random effects analysis including
an estimte of τ2):

. metan a b c d, random

Study | RR [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
1 | 0.650 0.326 1.298 6.18
2 | 0.146 0.053 0.405 3.27
3 | 0.760 0.400 1.444 6.89
4 | 1.647 0.153 17.694 0.67
5 | 0.625 0.218 1.791 3.09
6 | 2.356 0.125 44.467 0.44
7 | 0.321 0.074 1.381 1.71
8 | 0.309 0.041 2.304 0.93
9 | 0.440 0.222 0.872 6.28
10 | 0.132 0.007 2.396 0.46
11 | 0.395 0.017 9.306 0.39
13 | 0.111 0.005 2.673 0.38
14 | 0.111 0.015 0.845 0.92
15 | 0.167 0.036 0.777 1.55
16 | 1.065 0.069 16.537 0.51
17 | 0.314 0.090 1.096 2.28
18 | 0.095 0.005 1.687 0.46
19 | 0.077 0.005 1.314 0.48
20 | 0.200 0.010 4.063 0.42
21 | 0.156 0.007 3.742 0.38
22 | 1.093 0.071 16.941 0.51
23 | 0.143 0.007 2.722 0.44
24 | 0.138 0.032 0.601 1.69
25 | 0.468 0.068 3.239 1.00
26 | 0.264 0.058 1.201 1.59
27 | 0.671 0.184 2.450 2.13
28 | 0.228 0.051 1.021 1.63
29 | 0.204 0.010 4.143 0.42
30 | 0.324 0.013 7.851 0.38
31 | 0.100 0.013 0.752 0.92
32 | 0.168 0.007 4.059 0.38
33 | 0.073 0.004 1.384 0.44
34 | 0.694 0.046 10.589 0.52
35 | 0.493 0.093 2.614 1.33
36 | 0.814 0.399 1.662 5.87
37 | 0.358 0.145 0.888 4.00
38 | 1.396 0.582 3.347 4.25
39 | 0.565 0.298 1.073 6.90
40 | 0.250 0.050 1.251 1.42
41 | 0.200 0.010 4.096 0.42
42 | 0.099 0.006 1.721 0.47
43 | 1.000 0.146 6.873 1.01
44 | 0.301 0.083 1.090 2.16
45 | 0.455 0.120 1.727 2.02
46 | 0.145 0.018 1.146 0.88
47 | 1.018 0.381 2.716 3.49
48 | 0.333 0.015 7.619 0.39
49 | 0.398 0.086 1.833 1.57
50 | 0.250 0.029 2.159 0.81
51 | 0.490 0.046 5.231 0.68
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52 | 5.185 0.261 103.110 0.43
53 | 0.124 0.036 0.425 2.34
54 | 0.169 0.069 0.418 4.02
55 | 0.587 0.055 6.286 0.68
56 | 0.543 0.104 2.828 1.36
57 | 0.143 0.008 2.679 0.45
58 | 0.625 0.109 3.569 1.22
59 | 3.000 0.326 27.631 0.77
60 | 1.000 0.063 15.849 0.50
61 | 0.250 0.029 2.159 0.81
12 | (Excluded)
---------------------+---------------------------------------------------
D+L pooled RR | 0.429 0.352 0.523 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 63.49 (d.f. = 59) p = 0.321
I-squared (variation in RR attributable to heterogeneity) = 7.1%
Estimate of between-study variance Tau-squared = 0.0405

Test of RR=1 : z= 8.39 p = 0.000
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