18 research outputs found

    Allograft and patient survival after sequential HSCT and kidney transplantation from the same donor - A multicenter analysis

    Get PDF
    Tolerance induction through simultaneous hematopoietic stem cell and renal transplantation has shown promising results, but it is hampered by the toxicity of preconditioning therapies and graft-versus-host disease (GVHD). Moreover, renal function has never been compared to conventionally transplanted patients, thus, whether donor-specific tolerance results in improved outcomes remains unanswered. We collected follow-up data of published cases of renal transplantations after hematopoietic stem cell transplantation from the same donor and compared patient and transplant kidney survival as well as function with caliper-matched living-donor renal transplantations from the Austrian dialysis and transplant registry. Overall, 22 tolerant and 20 control patients were included (median observation period 10 years [range 11 months to 26 years]). In the tolerant group, no renal allograft loss was reported, whereas 3 were lost in the control group. Median creatinine levels were 85 μmol/l (interquartile range [IQR] 72-99) in the tolerant cohort and 118 μmol/l (IQR 99-143) in the control group. Mixed linear-model showed around 29% lower average creatinine levels throughout follow-up in the tolerant group (P < .01). Our data clearly show stable renal graft function without long-term immunosuppression for many years, suggesting permanent donor-specific tolerance. Thus sequential transplantation might be an alternative approach for future studies targeting tolerance induction in renal allograft recipients

    A multicentre, patient- and assessor-blinded, non-inferiority, randomised and controlled phase II trial to compare standard and torque teno virus-guided immunosuppression in kidney transplant recipients in the first year after transplantation:TTVguideIT

    Get PDF
    Background: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. Methods: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. Discussion: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents.</p

    Surface plasmon resonance analysis shows an IgG-isotype-specific defect in ABO blood group antibody formation in patients with common variable immunodeficiency

    Get PDF
    Background: Common variable immunodeficiency (CVID) is the most common clinically severe primary immunodeficiency and comprises a heterogeneous group of patients with recurrent severe bacterial infections due to the failure to produce IgG antibodies after exposure to infectious agents and immunization. Diagnostic recommendations for antibody failure include assessment of isoagglutinins. We have readdressed this four decades old but still accepted recommendation with up to date methodology.Methods: Anti-A/B IgM- and IgG-antibodies were measured by Diamed-ID Micro Typing, surface plasmon resonance (SPR) using the Biacore® device and flow cytometry.Results: When Diamed-ID Micro Typing was used, CVID patients (n=34) showed IgG- and IgM-isoagglutinins that were comparable to healthy volunteers (n=28), while all XLA patients (n=8) had none. Anti-A/B IgM-antibodies were present in more than 2/3 of the CVID patients and showed binding kinetics comparable to anti-A/B IgM-antibodies from healthy individuals. A correlation could be found in CVID patients between levels of anti-A/B IgM-antibodies and levels of serum IgM and PnP-IgM-antibodies. In contrast in CVID patients as a group ABO antibodies were significantly decreased when assessed by SPR, which correlated with levels of switched memory, non-switched memory and naïve B cells, but all CVID patients had low/undetectable anti-A/B IgG-antibodies.Conclusion: These results indicate that conventional isoagglutinin assessment and assessment of anti-A/B IgM antibodies are not suited for the diagnosis of impaired antibody production in CVID. Examination of anti-A/B IgG antibodies by SPR provides a useful method for the diagnosis of IgG antibody failure in all CVID patients studied, thus indicating an important additional rationale to start immunoglobulin replacement therapy early in these patients, before post-infectious sequelae develop

    Glomerular C4d in Post-Transplant IgA Nephropathy is associated with decreased allograft survival

    No full text
    International audienceBackground: Glomerulonephritis (GN), including post-transplant IgAN (post-Tx IgAN) is an important contributor to decreased long-term allograft survival. The immunopathological detection of the complement degradation product C4d in glomeruli (C4dG) has been recently described as a risk factor in native kidney IgAN, however little is known about C4dG deposition in post-Tx IgAN. We hypothesized that glomerular C4d may indicate a more aggressive disease course and worse allograft survival in patients with post-Tx IgAN.Methods: In this retrospective study we assessed the presence and clinical relevance of C4dG in patients with post-transplant IgAN. We analyzed 885 renal allograft recipients, including 84 patients with post-transplant GN. All patients were transplanted between January 1999 and April 2006 and underwent at least one biopsy for differnt causes. The primary endpoint was death-censored graft survival, with a median follow-up of 9.6 (IQR 3.8–13.2) years.Results: The prevalence of post-Tx GN was 9.5%. Twenty-seven patients with post-Tx IgAN were included. C4dG positive patients (N = 18, 66.7%) had significantly worse allograft survival compared to C4dG negative post-Tx IgAN patients and patients without post-Tx IgAN [C4dG positive: 27.8% vs. 55.6% and 66.0%; log-rank: p = 0.01]. C4dG remained a significant risk factor (HR 2.22, 95% CI 1.27–3.87) for allograft loss even after adjustment for T cell mediated rejection (TCMR) and antibody mediated rejection.Conclusion: Glomerular C4d deposition is an independent risk factor for worse graft-survival in patients with post-Tx IgAN, even after adjusting for other risk factors such as antibody mediated rejection. Assessment of glomerular C4d deposition may provide a valuable prognostic risk assessment tool to identify high risk patients in post-Tx IgAN

    Bacterial metabolite interference with maturation of human monocyte-derived dendritic cells

    No full text
    Dendritic cells (DC), the most potent APC, are central to antimicrobial immunity. Because of evolutionary pressure, it is reasonable that pathogens have evolved strategies to also subvert this host-defense mechanism. In the present study, we describe a novel way of bacterial interference with DC maturation. The bacterial metabolite n-butyrate, which occurs physiologically in high concentrations in the gastrointestinal tract and has well-known anti-inflammatory effects, is able to prevent LPS-induced maturation of DC resulting in a reduced capability to stimulate T cells. In particular, n-butyrate prevents homotypic DC clustering, inhibits IL-12 while sparing IL-10 production, and at the molecular level, blocks NF-kappa B translocation. These results demonstrate efficient targeting of DC function by a bacterial metabolite, which might explain the particular type of immune responsiveness in the presence of this bacterial agent as exemplified in the gastrointestinal tract

    Clazakizumab in late antibody-mediated rejection: study protocol of a randomized controlled pilot trial

    No full text
    Abstract Background Late antibody-mediated rejection (ABMR) triggered by donor-specific antibodies (DSA) is a cardinal cause of kidney allograft dysfunction and loss. Diagnostic criteria for this rejection type are well established, but effective treatment remains a major challenge. Recent randomized controlled trials (RCT) have failed to demonstrate the efficacy of widely used therapies, such as rituximab plus intravenous immunoglobulin or proteasome inhibition (bortezomib), reinforcing a great need for new therapeutic concepts. One promising target in this context may be interleukin-6 (IL-6), a pleiotropic cytokine known to play an important role in inflammation and adaptive immunity. Methods This investigator-driven RCT was designed to assess the safety and efficacy of clazakizumab, a genetically engineered humanized monoclonal antibody directed against IL-6. The study will include 20 DSA-positive kidney allograft recipients diagnosed with ABMR ≥ 365 days after transplantation. Participants will be recruited at two study sites in Austria and Germany (Medical University of Vienna; Charité University Medicine Berlin). First, patients will enter a three-month double-blind RCT (1,1 randomization, stratification according to ABMR phenotype and study site) and will receive either clazakizumab (subcutaneous administration of 25 mg in monthly intervals) or placebo. In a second open-label part of the trial (months 4–12), all patients will receive clazakizumab at 25 mg every month. The primary endpoint is safety and tolerability. Secondary endpoints are the pharmacokinetics and pharmacodynamics of clazakizumab, its effect on drug metabolism in the liver, DSA characteristics, morphological ABMR lesions and molecular gene expression patterns in three- and 12-month protocol biopsies, serum/urinary biomarkers of inflammation and endothelial activation/injury, Torque Teno viral load as a measure of overall immunosuppression, kidney function, urinary protein excretion, as well as transplant and patient survival. Discussion Currently, there is no treatment proven to be effective in halting the progression of late ABMR. Based on the hypothesis that antagonizing the effects of IL-6 improves the outcome of DSA-positive late ABMR by counteracting DSA-triggered inflammation and B cell/plasma cell-driven alloimmunity, we suggest that our trial has the potential to provide proof of concept of a novel treatment of this type of rejection. Trial registration ClinicalTrials.gov, NCT03444103. Registered on 23 February 2018 (retrospective registration)
    corecore