187 research outputs found
Chronic Kidney Disease: Novel Insights from Genome-Wide Association Studies
Chronic kidney disease (CKD) is common, affecting about 10% of the general population, and causing significant morbidity and mortality. Apart from the risk conferred by traditional cardiovascular risk factors, there is a strong genetic component. The method of a genome-wide association study (GWAS) is a powerful hypothesis-free approach to unravel this component by association analyses of CKD with several million genetic variants distributed across the genome. Since the publication of the first GWAS in 2005, this method has led to the discovery of novel loci for numerous human common diseases and phenotypes. Here, we review the recent successes of meta-analyses of GWAS on renal phenotypes. UMOD, SHROOM3, STC1, LASS2, GCKR, ALMS1, TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2/SH2B3, DACH1, UBE2Q2, and SLC7A9 were uncovered as loci associated with estimated glomerular filtration rate (eGFR) and CKD, and CUBN as a locus for albuminuria in cross-sectional data of general population studies. However, less than 1.5% of the total variance of eGFR and albuminuria is explained by the identified variants, and the relative risk for CKD is modified by at most 20% per locus. In African Americans, much of the risk for end-stage nondiabetic kidney disease is explained by common variants in the MYH9/APOL1 locus, and in individuals of European descent, variants in HLA-DQA1 and PLA2R1 implicate most of the risk for idiopathic membranous nephropathy. In contrast, genetic findings in the analysis of diabetic nephropathy are inconsistent. Uncovering variants explaining more of the genetically determined variability of kidney function is hampered by the multifactorial nature of CKD and different mechanisms involved in progressive CKD stages, and by the challenges in elucidating the role of low-frequency variants. Meta-analyses with larger sample sizes and analyses of longitudinal renal phenotypes using higher-resolution genotyping data are required to uncover novel loci associated with severe renal phenotypes
Eine chronische Niereninsuffizienz, auch in höherem Stadium, ist Patienten hÀufig unbekannt-aber warum wissen Frauen noch seltener von ihrer Erkrankung als MÀnner?
Introduction: Chronic kidney failure (CKD) is as common as diabetes or coronary heart disease in a population aged 40 years and older. Although CKD increases the risk of secondary diseases or premature death, patients with CKD are often unaware of their disease. In a recent analysis of German data, unawareness CKD was higher in women than in men. Methods: Baseline data from 2010 of 3,305 CKD patients from German cohort studies and registries were analyzed. Stage 1-4 CKD was defined by eGFR (estimated glomerular filtration rate) and albumin-creatinine ratio according to the KDIGO-guideline. Patient knowledge of CKD was coded according to self-report. The proportion of patients without knowledge of CKD and the sex-specific proportion difference (each with 95 % confidence interval) were calculated according to CKD stages and additional comorbidities (diabetes, hypertension, anemia, and cardiovascular disease). In addition, the prevalence ratio (PR) for not knowing about CKD was estimated for women compared to men crude and adjusted for age and other risk factors. Results: Women were less likely than men to know about their CKD in all subgroups studied by age, CKD stage, and comorbidities. The proportion difference for CKD awareness increased with higher CKD stage and was 21 percentage points (7.6; 34.6) at the expense of women in CKD stage 4. Among patients with CKD stage 3b and concomitant grade 2 hypertension, 61 % of women versus 45 % of men were unaware of their disease. The PR for CKD unawareness in women compared with men in the fully adjusted model increased from 1.08 (1.00; 1.16) in CKD stage 3a to 1.75 (1.14; 2.68) in CKD stage 4. Conclusion: Despite the presence risk factors that necessitate monitoring of renal function, less than half of patients know they have CKD stage 3b or 4. Women are less likely to be aware of their CKD in all subgroups. Possible causes are gender-related differences in primary health care (gender bias) or in patient-doctor communication. © 2022 The Author(s).Hintergrund:âChronische Niereninsuffizienz (CKD) ist in der Bevölkerung ab einem Alter von 40 Jahren genauso verbreitet wie Diabetes oder koronare Herzkrankheit. Obwohl eine CKD das Risiko fĂŒr Folgeerkrankungen oder vorzeitigen Tod erhöht, wissen Patienten oft nichts von ihrer Erkrankung. In einer Auswertung deutscher Daten war die Unkenntnis ĂŒber eine CKD bei Frauen gröĂer als bei MĂ€nnern. Methode:âEs wurden Baseline-Daten aus dem Jahr 2010 von 3305 CKD-Patienten aus deutschen Kohortenstudien und Registern ausgewertet. Eine CKD der Stadien 1â4 war nach veröffentlichten Leitlinien definiert. Das Patientenwissen ĂŒber eine CKD wurde ĂŒber Selbstauskunft kodiert. Der Anteil von Patienten ohne Wissen ĂŒber eine CKD sowie die geschlechtsspezifische Anteilsdifferenz (jeweils mit 95â%-Konfidenzintervall) wurde nach CKD-Stadien und weiteren KomorbiditĂ€ten berechnet. DarĂŒber hinaus wurde die PrĂ€valenz-Ratio (PR) fĂŒr die Nichtkenntnis einer CKD fĂŒr Frauen im Vergleich zu MĂ€nnern grob und nach Alter und weiteren Risikofaktoren adjustiert geschĂ€tzt. Ergebnisse:âIn den Subgruppen nach Alter, CKD-Stadium und KomorbiditĂ€ten wussten Frauen seltener von ihrer CKD als MĂ€nner. Der Anteilsunterschied im Wissen um eine CKD stieg mit höherem CKD-Stadium an und betrug im Stadium 4 21 Prozentpunkte (7,6; 34,6) zuungunsten der Frauen. Bei Patienten mit einer CKD im Stadium 3b und Bluthochdruck Grad 2 wussten 61â% der Frauen nichts von ihrer Erkrankung, verglichen mit 45â% der MĂ€nner. Das PR fĂŒr die Unkenntnis einer CKD fĂŒr Frauen im Vergleich zu MĂ€nnern im voll-adjustierten Modell stieg von 1,08 (1,00; 1,16) bei einer CKD 3a auf 1,75 (1,14; 2,68) bei einer CKD im Stadium 4. Folgerung:âFrauen wissen in allen untersuchten Subgruppen seltener von ihrer CKD als MĂ€nner. Der Geschlechtsunterschied besteht unabhĂ€ngig von allen untersuchten Einflussfaktoren. Mögliche Ursachen sind unbewusste geschlechtsbezogene Unterschiede in der Versorgung (gender bias) oder in der Patient-Arzt-Kommunikation
Development and Validation of a Prediction Model for Future Estimated Glomerular Filtration Rate in People With Type 2 Diabetes and Chronic Kidney Disease
Importance: Type 2 diabetes increases the risk of progressive diabetic kidney disease, but reliable prediction tools that can be used in clinical practice and aid in patients' understanding of disease progression are currently lacking. Objective: To develop and externally validate a model to predict future trajectories in estimated glomerular filtration rate (eGFR) in adults with type 2 diabetes and chronic kidney disease using data from 3 European multinational cohorts. Design, Setting, and Participants: This prognostic study used baseline and follow-up information collected between February 2010 and December 2019 from 3 prospective multinational cohort studies: PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers), GCKD (German Chronic Kidney Disease), and DIACORE (Diabetes Cohorte). A total of 4637 adult participants (aged 18-75 years) with type 2 diabetes and mildly to moderately impaired kidney function (baseline eGFR of â„30 mL/min/1.73 m2) were included. Data were analyzed between June 30, 2021, and January 31, 2023. Main Outcomes and Measures: Thirteen variables readily available from routine clinical care visits (age, sex, body mass index; smoking status; hemoglobin A1c[mmol/mol and percentage]; hemoglobin, and serum cholesterol levels; mean arterial pressure, urinary albumin-creatinine ratio, and intake of glucose-lowering, blood-pressure lowering, or lipid-lowering medication) were selected as predictors. Repeated eGFR measurements at baseline and follow-up visits were used as the outcome. A linear mixed-effects model for repeated eGFR measurements at study entry up to the last recorded follow-up visit (up to 5 years after baseline) was fit and externally validated. Results: Among 4637 adults with type 2 diabetes and chronic kidney disease (mean [SD] age at baseline, 63.5 [9.1] years; 2680 men [57.8%]; all of White race), 3323 participants from the PROVALID and GCKD studies (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%]) were included in the model development cohort, and 1314 participants from the DIACORE study (mean [SD] age at baseline, 64.5 [8.3] years; 816 men [62.1%]) were included in the external validation cohort, with a mean (SD) follow-up of 5.0 (0.6) years. Updating the random coefficient estimates with baseline eGFR values yielded improved predictive performance, which was particularly evident in the visual inspection of the calibration curve (calibration slope at 5 years: 1.09; 95% CI, 1.04-1.15). The prediction model had good discrimination in the validation cohort, with the lowest C statistic at 5 years after baseline (0.79; 95% CI, 0.77-0.80). The model also had predictive accuracy, with an R2ranging from 0.70 (95% CI, 0.63-0.76) at year 1 to 0.58 (95% CI, 0.53-0.63) at year 5. Conclusions and Relevance: In this prognostic study, a reliable prediction model was developed and externally validated; the robust model was well calibrated and capable of predicting kidney function decline up to 5 years after baseline. The results and prediction model are publicly available in an accompanying web-based application, which may open the way for improved prediction of individual eGFR trajectories and disease progression.</p
A prediction model for the decline in renal function in people with type 2 diabetes mellitus: study protocol
Background
Chronic kidney disease (CKD) is a well-established complication in people with diabetes mellitus. Roughly one quarter of prevalent patients with diabetes exhibit a CKD stage of 3 or higher and the individual course of progression is highly variable. Therefore, there is a clear need to identify patients at high risk for fast progression and the implementation of preventative strategies. Existing prediction models of renal function decline, however, aim to assess the risk by artificially grouped patients prior to model building into risk strata defined by the categorization of the least-squares slope through the longitudinally fluctuating eGFR values, resulting in a loss of predictive precision and accuracy.
Methods
This study protocol describes the development and validation of a prediction model for the longitudinal progression of renal function decline in Caucasian patients with type 2 diabetes mellitus (DM2). For development and internal-external validation, two prospective multicenter observational studies will be used (PROVALID and GCKD). The estimated glomerular filtration rate (eGFR) obtained at baseline and at all planned follow-up visits will be the longitudinal outcome. Demographics, clinical information and laboratory measurements available at a baseline visit will be used as predictors in addition to random country-specific intercepts to account for the clustered data. A multivariable mixed-effects model including the main effects of the clinical variables and their interactions with time will be fitted. In application, this model can be used to obtain personalized predictions of an eGFR trajectory conditional on baseline eGFR values. The final model will then undergo external validation using a third prospective cohort (DIACORE). The final prediction model will be made publicly available through the implementation of an R shiny web application.
Discussion
Our proposed state-of-the-art methodology will be developed using multiple multicentre study cohorts of people with DM2 in various CKD stages at baseline, who have received modern therapeutic treatment strategies of diabetic kidney disease in contrast to previous models. Hence, we anticipate that the multivariable prediction model will aid as an additional informative tool to determine the patient-specific progression of renal function and provide a useful guide to early on identify individuals with DM2 at high risk for rapid progression
Validated SNPs for eGFR and their associations with albuminuria
Albuminuria and reduced glomerular filtration rate are manifestations of chronic kidney disease (CKD) that predict end-stage renal disease, acute kidney injury, cardiovascular disease and death. We hypothesized that SNPs identified in association with the estimated glomerular filtration rate (eGFR) would also be associated with albuminuria. Within the CKDGen Consortium cohort (n= 31 580, European ancestry), we tested 16 eGFR-associated SNPs for association with the urinary albumin-to-creatinine ratio (UACR) and albuminuria [UACR >25 mg/g (women); 17 mg/g (men)]. In parallel, within the CARe Renal Consortium (n= 5569, African ancestry), we tested seven eGFR-associated SNPs for association with the UACR. We used a Bonferroni-corrected P-value of 0.003 (0.05/16) in CKDGen and 0.007 (0.05/7) in CARe. We also assessed whether the 16 eGFR SNPs were associated with the UACR in aggregate using a beta-weighted genotype score. In the CKDGen Consortium, the minor A allele of rs17319721 in the SHROOM3 gene, known to be associated with a lower eGFR, was associated with lower ln(UACR) levels (beta = â0.034, P-value = 0.0002). No additional eGFR-associated SNPs met the Bonferroni-corrected P-value threshold of 0.003 for either UACR or albuminuria. In the CARe Renal Consortium, there were no associations between SNPs and UACR with a P< 0.007. Although we found the genotype score to be associated with albuminuria (P= 0.0006), this result was driven almost entirely by the known SHROOM3 variant, rs17319721. Removal of rs17319721 resulted in a P-value 0.03, indicating a weak residual aggregate signal. No alleles, previously demonstrated to be associated with a lower eGFR, were associated with the UACR or albuminuria, suggesting that there may be distinct genetic components for these trait
Validation of T-TrackÂź CMV to assess the functionality of cytomegalovirus-reactive cell-mediated immunity in hemodialysis patients
Background: Uncontrolled cytomegalovirus (CMV) replication in immunocompromised solid-organ transplant recipients is a clinically relevant issue and an indication of impaired CMV-specific cell-mediated immunity (CMI). Primary aim of this study was to assess the suitability of the immune monitoring tool T-Track (R) CMV to determine CMV-reactive CMI in a cohort of hemodialysis patients representative of patients eligible for renal transplantation. Positive and negative agreement of T-Track (R) CMV with CMV serology was examined in 124 hemodialysis patients, of whom 67 (54%) revealed a positive CMV serostatus. Secondary aim of the study was to evaluate T-Track (R) CMV performance against two unrelated CMV-specific CMI monitoring assays, QuantiFERON (R)-CMV and a cocktail of six class I iTAg (TM) MHC Tetramers. Results: Positive T-Track (R) CMV results were obtained in 90% (60/67) of CMV-seropositive hemodialysis patients. In comparison, 73% (45/62) and 77% (40/52) positive agreement with CMV serology was achieved using QuantiFERON (R)-CMV and iTAg (TM) MHC Tetramer. Positive T-Track (R) CMV responses in CMV-seropositive patients were dominated by pp65-reactive cells (58/67 [ 87%]), while IE-1-responsive cells contributed to an improved (87% to 90%) positive agreement of T-Track (R) CMV with CMV serology. Interestingly, T-Track (R) CMV, QuantiFERON (R)-CMV and iTAg (TM) MHC Tetramers showed 79% (45/57), 87% (48/55) and 93% (42/45) negative agreement with serology, respectively, and a strong inter-assay variability. Notably, T-Track (R) CMV was able to detect IE-1-reactive cells in blood samples of patients with a negative CMV serology, suggesting either a previous exposure to CMV that yielded a cellular but no humoral immune response, or TCR cross-reactivity with foreign antigens, both suggesting a possible protective immunity against CMV in these patients. Conclusion: T-Track (R) CMV is a highly sensitive assay, enabling the functional assessment of CMV-responsive cells in hemodialysis patients prior to renal transplantation. T-Track (R) CMV thus represents a valuable immune monitoring tool to identify candidate transplant recipients potentially at increased risk for CMV-related clinical complications
The German AugUR study: study protocol of a prospective study to investigate chronic diseases in the elderly
Background
The majority of patients suffering from chronic health disabilities is beyond 70 years of age. Typical late-onset chronic diseases include those affecting the heart, the kidney, cancer, and conditions of the eye such as age-related macular degeneration. These diseases disable patients for many years and largely compromise autonomy in daily life. Due to challenges in recruiting the elderly, the collection of population-based epidemiological data as a prerequisite to understand associated risk factors and mechanisms is commonly done in the general population within an age-range of 20 to 70 years.
Methods/Design
We establish the German AugUR study (Age-related diseases: understanding genetic and non-genetic influences - a study at the University of Regensburg), a prospective study in the mobile elderly general population in and around Regensburg in eastern Bavaria. In the long term, we aim to recruit 3,000 persons of Caucasian ethnicity with at least 70 years of age via residentsâ registration offices and conduct 3-year follow-ups.
The study protocol includes a standardized interview regarding social and life-style factors, medication history, quality-of-life, and existing diagnoses of common diseases. The participants undergo medical examinations for ophthalmological, cardiovascular or diabetes-related conditions, and general measurements of body shape and fitness. The program is particularly tailored for the elderly. Biobanking of whole blood, serum, plasma, and urine is conducted and standard laboratory measurements are performed in fresh samples.
Discussion
AugUR is specifically designed as a research platform to host studies of late onset diseases. Consequently, this platform will help (1) to unravel the genetic and non-genetic etiology of disease development and progression, (2) to serve as control group of elderly individuals for comparisons with various patient groups, (3) to derive prevalence and incidence data on chronic diseases, and (4) to provide clinical reference parameters for the elderly mobile general population. This data will foster our understanding of disease mechanisms, which may ultimately help to improve prevention, diagnosis, and therapy for frequent chronic diseases. Here we present the baseline study protocol of AugUR
Recommended from our members
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF â„5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants
A functional variant in NEPH3 gene confers high risk of renal failure in primary hematuric glomerulopathies. Evidence for predisposition to microalbuminuria in the general population.
BACKGROUND: Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even end-stage renal disease (ESRD), is a possible development for a subset of patients on long-term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We hypothesize that genetic modifiers may explain this variability of symptoms. METHODS: We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all the genes significantly expressed in the slit diaphragm (SD). Two variants were genotyped in a cohort of well-studied adult TBMN patients from 19 Greek-Cypriot families, with a homogeneous genetic background. Patients were categorized as "Severe" or "Mild", based on the presence or not of proteinuria, CRF and ESRD. A larger pooled cohort (HEMATURIA) of 524 patients, including IgA nephropathy patients, was used for verification. Additionally, three large general population cohorts [Framingham Heart Study (FHS), KORAF4 and SAPHIR] were used to investigate if the NEPH3-V353M variant has any renal effect in the general population. RESULTS AND CONCLUSIONS: Genotyping for two high-scored variants in 103 TBMN adult patients with founder mutations who were classified as mildly or severely affected, pointed to an association with variant NEPH3-V353M (filtrin). This promising result prompted testing in the larger pooled cohort (HEMATURIA), indicating an association of the 353M variant with disease severity under the dominant model (p = 3.0x10-3, OR = 6.64 adjusting for gender/age; allelic association: p = 4.2x10-3 adjusting for patients' kinships). Subsequently, genotyping 6,531 subjects of the Framingham Heart Study (FHS) revealed an association of the homozygous 353M/M genotype with microalbuminuria (p = 1.0x10-3). Two further general population cohorts, KORAF4 and SAPHIR confirmed the association, and a meta-analysis of all three cohorts (11,258 individuals) was highly significant (p = 1.3x10-5, OR = 7.46). Functional studies showed that Neph3 homodimerization and Neph3-Nephrin heterodimerization are disturbed by variant 353M. Additionally, 353M was associated with differential activation of the unfolded protein response pathway, when overexpressed in stressed cultured undifferentiated podocyte cells, thus attesting to its functional significance. Genetics and functional studies support a "rare variant-strong effect" role for NEPH3-V353M, by exerting a negative modifier effect on primary glomerular hematuria. Additionally, genetics studies provide evidence for a role in predisposing homozygous subjects of the general population to micro-albuminuria
Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function
In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 Ă 10â9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 Ă 10â4-2.2 Ă 10â7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in genera
- âŠ