74 research outputs found

    Integral group ring of the McLaughlin simple group

    Get PDF
    We consider the Zassenhaus conjecture for the normalized unit group of the integral group ring of the McLaughlin sporadic group McL. As a consequence, we confirm for this group the Kimmerle’s conjecture on prime graphs

    Integral group ring of the first Mathieu simple group

    Get PDF
    We investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the simple Mathieu group M11. As a consequence, for this group we confirm the conjecture by Kimmerle about prime graphs

    Kimmerle conjecture for the Held and O'Nan sporadic simple groups

    Get PDF
    Using the Luthar--Passi method, we investigate the Zassenhaus and Kimmerle conjectures for normalized unit groups of integral group rings of the Held and O'Nan sporadic simple groups. We confirm the Kimmerle conjecture for the Held simple group and also derive for both groups some extra information relevant to the classical Zassenhaus conjecture

    Covering theorems for Artinian rings

    Get PDF
    The covering properties of Artinian rings which depend on their additive structure only, are investigated

    CoRoT-TESS eclipsing binaries with light-travel-time effect

    Get PDF
    Identifying long-period eclipsing binaries with space-based photometry is still a challenge even in the century of space telescopes due to the relatively short observation sequences and short lifetime of these missions. The Transiting Exoplanet Survey Satellite (TESS) space telescope is an appropriate tool to supplement previous space-based observations. In this paper we report the first results of the eclipse timing variation (ETV) analyses of eclipsing binaries (EBs) measured by CoRoT and TESS space telescopes. Among the 1428 EB candidates we found 4 new potential triple candidates, for which ETV was analysed and fitted by the well-known light-travel-time effect (LTTE). One of them shows significant phase shift in its folded light curve which required extra care. In this paper we also present some other systems showing significant ETV signals that could be explained by mass transfer or apsidal motion.Comment: 6 pages, 5 figures, accepted for publication in MNRAS. Table 3 is available as online supplementary materia

    The contact binary VW Cephei revisited: surface activity and period variation

    Full text link
    Context. Despite the fact that VW Cephei is one of the well-studied contact binaries in the literature, there is no fully consistent model available that can explain every observed property of this system. Aims. Our motivation is to obtain new spectra along with photometric measurements, to analyze what kind of changes may have happened in the system in the past two decades, and to propose new ideas for explaining them. Methods. For the period analysis we determined 10 new times of minima from our light curves, and constructed a new O-C diagram of the system. Radial velocities of the components were determined using the cross-correlation technique. The light curves and radial velocities were modelled simultaneously with the PHOEBE code. All observed spectra were compared to synthetic spectra and equivalent widths of the Hα\alpha line were measured on their differences. Results. We have re-determined the physical parameters of the system according to our new light curve and spectral models. We confirm that the primary component is more active than the secondary, and there is a correlation between spottedness and the chromospheric activity. We propose that flip-flop phenomenon occurring on the primary component could be a possible explanation of the observed nature of the activity. To explain the period variation of VW Cep, we test two previously suggested scenarios: presence of a fourth body in the system, and the Applegate-mechanism caused by periodic magnetic activity. We conclude that although none of these mechanisms can be ruled out entirely, the available data suggest that mass transfer with a slowly decreasing rate gives the most likely explanation for the period variation of VW Cep.Comment: 13 pages, 18 figures, 9 tables, accepted for publication in Astronomy and Astrophysic

    Genetic optimization of attosecond-pulse generation in light-field synthesizers

    Get PDF
    We demonstrate control over attosecond pulse generation and shaping by numerically optimizing the synthesis of few-cycle to sub-cycle driver waveforms. The optical waveform synthesis takes place in an ultrabroad spectral band covering the ultraviolet-infrared domain. These optimized driver waves are used for ultrashort single and double attosecond pulse production (with tunable separation) revealing the potentials of the light wave synthesizer device demonstrated by Wirth et al. [Science 334, 195 (2011)]. The results are also analyzed with respect to attosecond pulse propagation phenomena

    Variability of M giant stars based on Kepler photometry: general characteristics

    Get PDF
    M giants are among the longest-period pulsating stars which is why their studies were traditionally restricted to analyses of low-precision visual observations, and more recently, accurate ground-based data. Here we present an overview of M giant variability on a wide range of time-scales (hours to years), based on analysis of thirteen quarters of Kepler long-cadence observations (one point per every 29.4 minutes), with a total time-span of over 1000 days. About two-thirds of the sample stars have been selected from the ASAS-North survey of the Kepler field, with the rest supplemented from a randomly chosen M giant control sample. We first describe the correction of the light curves from different quarters, which was found to be essential. We use Fourier analysis to calculate multiple frequencies for all stars in the sample. Over 50 stars show a relatively strong signal with a period equal to the Kepler-year and a characteristic phase dependence across the whole field-of-view. We interpret this as a so far unidentified systematic effect in the Kepler data. We discuss the presence of regular patterns in the distribution of multiple periodicities and amplitudes. In the period-amplitude plane we find that it is possible to distinguish between solar-like oscillations and larger amplitude pulsations which are characteristic for Mira/SR stars. This may indicate the region of the transition between two types of oscillations as we move upward along the giant branch.Comment: 12 pages, 13 figures, accepted for publication in MNRAS. The normalized light curves are available upon reques
    corecore