185 research outputs found

    Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic colorectal cancers (CRC) are multifactorial diseases resulting from the combined effects of numerous genetic, environmental and behavioral risk factors. Genetic association studies have suggested low-penetrance alleles of extremely varied genes to be involved in susceptibility to CRC in Caucasian populations.</p> <p>Methods</p> <p>Through a large genetic association study based on 1023 patients with sporadic CRC and 1121 controls, we tested a panel of these low-penetrance alleles to find out whether they could determine "genotypic profiles" at risk for CRC among individuals of the French population. We examined 52 polymorphisms of 35 genes – drawn from inflammation, xenobiotic detoxification, one-carbon, insulin signaling, and DNA repair pathways – for their possible contribution to colorectal carcinogenesis. The risk of cancer associated with these polymorphisms was assessed by calculation of odds ratios (OR) using multivariate analyses and logistic regression.</p> <p>Results</p> <p>Whereas all these polymorphisms had previously been found to be associated with CRC risk, especially in Caucasian populations, we were able to replicate the association for only five of them. Three SNPs were shown to increase CRC risk: <it>PTGS1 </it>c.639C>A (p.Gly213Gly), <it>IL8 </it>c.-352T>A, and <it>MTHFR </it>c.1286A>C (p.Ala429Glu). On the contrary, two other SNPs, <it>PLA2G2A </it>c.435+230C>T and <it>PPARG </it>c.1431C>T (p.His477His), were associated with a decrease in CRC risk. Further analyses highlighted genotypic combinations having a greater predisposing effect on CRC (OR 1.97, 95%CI 1.31–2.97, p = 0.0009) than the allelic variants that were examined separately.</p> <p>Conclusion</p> <p>The identification of CRC-predisposing combinations, composed of alleles <it>PTGS1 </it>c.639A, <it>PLA2G2A </it>c.435+230C, <it>PPARG </it>c.1431C, <it>IL8 </it>c.-352A, and <it>MTHFR </it>c.1286C, highlights the importance of inflammatory processes in susceptibility to sporadic CRC, as well as a possible crosstalk between inflammation and one-carbon pathways.</p

    Identification of shared genetic variants between schizophrenia and lung cancer.

    Get PDF
    Epidemiology studies suggest associations between schizophrenia and cancer. However, the underlying genetic mechanisms are not well understood, and difficult to identify from epidemiological data. We investigated if there is a shared genetic architecture between schizophrenia and cancer, with the aim to identify specific overlapping genetic loci. First, we performed genome-wide enrichment analysis and second, we analyzed specific loci jointly associated with schizophrenia and cancer by the conjunction false discovery rate. We analyzed the largest genome-wide association studies of schizophrenia and lung, breast, prostate, ovary, and colon-rectum cancer including more than 220,000 subjects, and included genetic association with smoking behavior. Polygenic enrichment of associations with lung cancer was observed in schizophrenia, and weak enrichment for the remaining cancer sites. After excluding the major histocompatibility complex region, we identified three independent loci jointly associated with schizophrenia and lung cancer. The strongest association included nicotinic acetylcholine receptors and is an established pleiotropic locus shared between lung cancer and smoking. The two other loci were independent of genetic association with smoking. Functional analysis identified downstream pleiotropic effects on epigenetics and gene-expression in lung and brain tissue. These findings suggest that genetic factors may explain partly the observed epidemiological association of lung cancer and schizophrenia

    Impairment of the mitochondrial one-carbon metabolism enzyme SHMT2 causes a novel brain and heart developmental syndrome

    Get PDF
    Inborn errors of metabolism cause a wide spectrum of neurodevelopmental and neurodegenerative conditions [15]. A pivotal enzyme located at the intersection of the amino acid and folic acid metabolic pathways is SHMT2, the mitochondrial form of serine hydroxymethyltransferase. SHMT2 performs the first step in a series of reactions that provide one-carbon units covalently bound to folate species in mitochondria: it transfers one-carbon units from serine to tetrahydrofolate (THF), generating glycine and 5,10-methylene-THF. Using whole exome sequencing (WES), we identified biallelic SHMT2 variants in five individuals from four different families. All identified variants were located in conserved residues, either absent or extremely rare in control databases (gnomAD, ExAC), and cosegregated based on a recessive mode of inheritance (pRec = 0.9918 for this gene). In family F1, a homozygous missense variant present in two affected siblings was located in a region without heterozygosity (~ 10 Mb, the only region > 1 Mb shared by both siblings) in which no other candidate variants were found, providing a strong genetic evidence of causality for these variants. The missense/in-frame deletion nature of these variants, and the absence of loss-of-function homozygous individuals in control databases, combined with the fact that complete loss of SHMT2 is embryonic lethal in the mouse, suggested that these variants may cause hypomorphic effects. Using 3D molecular dynamics models of the SHMT2 protein, we concluded that these candidate variants probably alter the SHMT2 oligomerization process, and/or disrupt the conformation of the active site, thus inducing deleterious effects on SHMT2 enzymatic function

    Biallelic loss-of-function variants in <i>CACHD1 </i>cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities

    Get PDF
    Purpose We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. Methods We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. Results Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. Conclusion Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities

    Expanding the clinical spectrum of hereditary fibrosing poikiloderma with tendon contractures, myopathy and pulmonary fibrosis due to <i>FAM111B </i>mutations

    Get PDF
    BACKGROUND: Hereditary Fibrosing Poikiloderma (HFP) with tendon contractures, myopathy and pulmonary fibrosis (POIKTMP [MIM 615704]) is a very recently described entity of syndromic inherited poikiloderma. Previously by using whole exome sequencing in five families, we identified the causative gene, FAM111B (NM_198947.3), the function of which is still unknown. Our objective in this study was to better define the specific features of POIKTMP through a larger series of patients. METHODS: Clinical and molecular data of two families and eight independent sporadic cases, including six new cases, were collected. RESULTS: Key features consist of: (i) early-onset poikiloderma, hypotrichosis and hypohidrosis; (ii) multiple contractures, in particular triceps surae muscle contractures; (iii) diffuse progressive muscular weakness; (iv) pulmonary fibrosis in adulthood and (v) other features including exocrine pancreatic insufficiency, liver impairment and growth retardation. Muscle magnetic resonance imaging was informative and showed muscle atrophy and fatty infiltration. Histological examination of skeletal muscle revealed extensive fibroadipose tissue infiltration. Microscopy of the skin showed a scleroderma-like aspect with fibrosis and alterations of the elastic network. FAM111B gene analysis identified five different missense variants (two recurrent mutations were found respectively in three and four independent families). All the mutations were predicted to localize in the trypsin-like cysteine/serine peptidase domain of the protein. We suggest gain-of-function or dominant-negative mutations resulting in FAM111B enzymatic activity changes. CONCLUSIONS: HFP with tendon contractures, myopathy and pulmonary fibrosis, is a multisystemic disorder due to autosomal dominant FAM111B mutations. Future functional studies will help in understanding the specific pathological process of this fibrosing disorder

    Mendelian randomization analysis of C-reactive protein on colorectal cancer risk

    Get PDF
    Background: Chronic inflammation is a risk factor for colorectal cancer (CRC). Circulating C-reactive protein (CRP) is also moderately associated with CRC risk. However, observational studies are susceptible to unmeasured confounding or reverse causality. Using genetic risk variants as instrumental variables, we investigated the causal relationship between genetically elevated CRP concentration and CRC risk, using a Mendelian randomization approach. Methods: Individual-level data from 30 480 CRC cases and 22 844 controls from 33 participating studies in three international consortia were used: the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal Transdisciplinary Study (CORECT) and the Colon Cancer Family Registry (CCFR). As instrumental variables, we included 19 single nucleotide polymorphisms (SNPs) previously associated with CRP concentration. The SNP-CRC associations were estimated using a logistic regression model adjusted for age, sex, principal components and genotyping phases. An inverse-variance weighted method was applied to estimate the causal effect of CRP on CRC risk. Results: Among the 19 CRP-associated SNPs, rs1260326 and rs6734238 were significantly associated with CRC risk (P = 7.5 × 10-4, and P = 0.003, respectively). A genetically predicted one-unit increase in the log-transformed CRP concentrations (mg/l) was not associated with increased risk of CRC [odds ratio (OR) = 1.04; 95% confidence interval (CI): 0.97, 1.12; P = 0.256). No evidence of association was observed in subgroup analyses stratified by other risk factors. Conclusions: In spite of adequate statistical power to detect moderate association, we found genetically elevated CRP concentration was not associated with increased risk of CRC among individuals of European ancestry. Our findings suggested that circulating CRP is unlikely to be a causal factor in CRC development
    corecore