116 research outputs found

    DPM as a radiation transport engine for PRIMO

    Get PDF
    Background PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code penelope, which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against penelope and to validate it for some specific cases. Methods DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus penelope, both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis. Results The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and penelope were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and penelope ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm)3 is used. Conclusions DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and penelope, which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.Postprint (published version

    Development of a smartphone virtual reality game to support the radiation therapy of children and adolescents in proton centers

    Get PDF
    IntroductionFor most patients, cancer therapy with radiation is a new experience coming with many unknown challenges. This can be stressful, particularly for children and adolescents. With the aim of reducing this stress and anxiety, a virtual-reality (VR) game, which can be used by patients prior to treatment, was developed and evaluated in a proton therapy center.MethodsThe specifications were derived from literature and from interviews with medical staff and patients. The gantry including the sound of its moving components and the sound of the interlock and safety system were identified as the main features relevant for preparation of a radiation course. Potential implementation difficulties were identified in a literature study and regarded in the design. Within the VR game, patients could interact with modeled equipment of the treatment room and hear the reportedly stress-inducing sounds in a stress-free environment prior to the treatment. The VR game was evaluated in a second series of interviews with patients.Results and DiscussionThis exploratory study demonstrated the specification, implementation and safe application of a VR game dedicated to young proton therapy patients. Initial anecdotal evidence suggested that the VR gaming experience was well received and found to be helpful when preparing young patients for radiation therapy

    Characterization of pixelated silicon detectors for daily quality assurance measurements in proton therapy

    Full text link
    The advanced imaging and delivery techniques in proton therapy allow conformal high-dose irradiation of the target volume with high accuracy using pencil beam scanning or beam shaping apertures. These irradiation methods increasingly include small radiation fields with large dose gradients, which require detector systems with high spatial resolution for quality assurance. In addition the measurement of all success parameters for daily quality assurance with only one proton field and one simple detector system would save a lot of time in clinical usage. Based on their good spatial resolution and high rate compatibility, pixelated silicon detectors could meet the new requirements. To assess their applicability in proton therapy, ATLAS pixelated silicon detectors are used to measure the lateral beam profile with high spatial resolution. Furthermore, a dose dependent detector calibration is presented to allow the measurement of the requested output constancy. A strategy to verify the proton energy during the daily quality assurance is under study. Promising results from proof-of-principle measurements at the West German Proton Therapy Centre in Essen, Germany, have been obtained.Comment: 5 pages, 6 figures, accepted for publication in the proceedings of TIPP 2021 to be published in Journal of Physics: Conference Serie

    Comprehensive investigation of lateral dose profile and output factor measurements in small proton fields from different delivery techniques

    Get PDF
    Background and purpose: As a part of the commissioning and quality assurance in proton beam therapy, lateral dose profiles and output factors have to be acquired. Such measurements can be performed with point detectors and are especially challenging in small fields or steep lateral penumbra regions as the detector's volume effect may lead to perturbations. To address this issue, this work aims to quantify and correct for such perturbations of six point detectors in small proton fields created via three different delivery techniques. Methods: Lateral dose profile and output measurements of three proton beam delivery techniques (pencil beam scanning, pencil beam scanning combined with collimators, passive scattering with collimators) were performed using high-resolution EBT3 films, a PinPoint 3D 31022 ionization chamber, a microSilicon diode 60023 and a microDiamond detector 60019 (all PTW Freiburg, Germany). Detector specific lateral dose response functions K(x,y) acting as the convolution kernel transforming the undisturbed dose distribution D(x,y) into the measured signal profiles M(x,y) were applied to quantify perturbations of the six investigated detectors in the proton fields and correct the measurements. A signal theoretical analysis in Fourier space of the dose distributions and detector's K(x,y) was performed to aid the understanding of the measurement process with regard to the combination of detector choice and delivery technique. Results: Quantification of the lateral penumbra broadening and signal reduction at the fields center revealed that measurements in the pencil beam scanning fields are only compromised slightly even by large volume ionization chambers with maximum differences in the lateral penumbra of 0.25 mm and 4% signal reduction at the field center. In contrast, radiation techniques with collimation are not accurately represented by the investigated detectors as indicated by a penumbra broadening up to 1.6 mm for passive scattering with collimators and 2.2 mm for pencil beam scanning with collimators. For a 3 mm diameter collimator field, a signal reduction at field center between 7.6% and 60.7% was asserted. Lateral dose profile measurements have been corrected via deconvolution with the corresponding K(x,y) to obtain the undisturbed D(x,y). Corrected output ratios of the passively scattered collimated fields obtained for the microDiamond, microSilicon and PinPoint 3D show agreement better than 0.9% (one standard deviation) for the smallest field size of 3 mm. Conclusion: Point detector perturbations in small proton fields created with three delivery techniques were quantified and found to be especially pronounced for collimated small proton fields with steep dose gradients. Among all investigated detectors, the microSilicon diode showed the smallest perturbations. The correction strategies based on detector's K(x,y) were found suitable for obtaining unperturbed lateral dose profiles and output factors. Approximation of K(x,y) by considering only the geometrical averaging effect has been shown to provide reasonable prediction of the detector's volume effect. The findings of this work may be used to guide the choice of point detectors in various proton fields and to contribute toward the development of a code of practice for small field proton dosimetry.</p

    Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine

    Get PDF
    Purpose: The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called “spray”. Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray. Methods: The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS. Results: SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model. Conclusion: Properly representing nozzle spray in RayStation's MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements

    Proton beam therapy for pediatric tumors of the central nervous system — experiences of clinical outcome and feasibility from the KiProReg Study

    Get PDF
    Simple Summary Radiation therapy is an important cornerstone of the treatment of many different types of brain tumors occurring in childhood. Proton beam therapy offers the opportunity to reduce doses outside of the target volume due to its physical characteristics. By sparing a large volume of the brain from radiation doses, proton beam therapy aims at reducing long-term side effects and preserving cognitive function. Our study aims at better understanding side effects and therefore contributing to better treatment decisions in this vulnerable group of patients. Therefore, the study analyses outcome and side effects including imaging changes in a large cohort of children with brain tumors from a prospective registry. Abstract As radiotherapy is an important part of the treatment in a variety of pediatric tumors of the central nervous system (CNS), proton beam therapy (PBT) plays an evolving role due to its potential benefits attributable to the unique dose distribution, with the possibility to deliver high doses to the target volume while sparing surrounding tissue. Children receiving PBT for an intracranial tumor between August 2013 and October 2017 were enrolled in the prospective registry study KiProReg. Patient’s clinical data including treatment, outcome, and follow-up were analyzed using descriptive statistics, Kaplan–Meier, and Cox regression analysis. Adverse events were scored according to the Common Terminology Criteria for Adverse Events (CTCAE) 4.0 before, during, and after PBT. Written reports of follow-up imaging were screened for newly emerged evidence of imaging changes, according to a list of predefined keywords for the first 14 months after PBT. Two hundred and ninety-four patients were enrolled in this study. The 3-year overall survival of the whole cohort was 82.7%, 3-year progression-free survival was 67.3%, and 3-year local control was 79.5%. Seventeen patients developed grade 3 adverse events of the CNS during long-term follow-up (new adverse event n = 7; deterioration n = 10). Two patients developed vision loss (CTCAE 4°). This analysis demonstrates good general outcomes after PBT

    Complete patient exposure during paediatric brain cancer treatment for photon and proton therapy techniques including imaging procedures

    Get PDF
    BackgroundIn radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment.Materials and methodsOrgan doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al.ResultsOut-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 μSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 μSv (testes) and 48 μSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs.ConclusionThe complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs

    Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al2O3 Reference Catalyst for CO2 Methanation

    Get PDF
    There is considerable motivation in the catalysis community and chemical industry to envision a future where rational catalyst design and targeted chemical process optimization become standard. Achieving this goal for heterogeneous catalysis requires a cultural shift centered around effective research data management. The core elements of modern catalysis research are synthesis, characterization, and testing, while all can be elevated by effective collection, correlation, interoperation, and exploitation of data between disciplines and stakeholders. Here, first steps are made towards a holistic picture of an industrial Ni/Al2_2O3_3 reference catalyst for CO2_2 methanation. A range of conventional and advanced characterization tools are applied to probe metal particle size and pore characteristics of the support, selected as crucial parameters for catalyst performance. Challenges are shown with respect to current reporting of characterization data and metadata, which ultimately influences the development and reliability of digital twins in catalysis research. Furthermore, the cooperation and combined expertise of diverse research groups from different fields is recognized as essential to deliver meaningful progress towards the digital future of catalysis research
    corecore