671 research outputs found

    Higgs Production via Gluon-Induced Weak Boson Fusion

    Full text link
    We present a calculation that allows for an estimation of the NNLO contributions to the Higgs production in the weak boson fusion channel. A possible deterioration of this important channel for the Higgs discoveries at the LHC can be ruled out by this calculation due to the small remaining cross section after the weak boson cuts.Comment: 4 pages, 3 figures. To appear in the proceedings of the 14th International QCD Conference (QCD 08), Montpellier, France, 7-12 July 200

    The Underlying Event and the Total Cross Section from Tevatron to the LHC

    Get PDF
    Multiple partonic interactions are widely used to simulate the hadronic final state in high energy hadronic collisions, and successfully describe many features of the data. It is important to make maximum use of the available physical constraints on such models, particularly given the large extrapolation from current high energy data to LHC energies. In eikonal models, the rate of multiparton interactions is coupled to the energy dependence of the total cross section. Using a Monte Carlo implementation of such a model, we study the connection between the total cross section, the jet cross section, and the underlying event. By imposing internal consistency on the model, we derive constraints on its parameters at the LHC. By imposing internal consistency on the model and comparing to current data we constrain the allowed range of its parameters. We show that measurements of the total proton-proton cross-section at the LHC are likely to break this internal consistency, and thus to require an extension of the model. Likely such extensions are that hard scatters probe a denser matter distribution inside the proton in impact parameter space than soft scatters, a conclusion also supported by Tevatron data on double-parton scattering, and/or that the basic parameters of the model are energy dependent.Comment: 17 pages, 6 figures, version accepted by JHE

    The H1 Forward Proton Spectrometer at HERA

    Full text link
    The forward proton spectrometer is part of the H1 detector at the HERA collider. Protons with energies above 500 GeV and polar angles below 1 mrad can be detected by this spectrometer. The main detector components are scintillating fiber detectors read out by position-sensitive photo-multipliers. These detectors are housed in so-called Roman Pots which allow them to be moved close to the circulating proton beam. Four Roman Pot stations are located at distances between 60 m and 90 m from the interaction point.Comment: 20 pages, 10 figures, submitted to Nucl.Instr.and Method

    Design criteria for multi-layered scintillating fibre arrays with inclined columns

    Full text link
    Multi-layered scintillating fibre arrays read-out are commonly used as high resolution charged particle hodoscopes. Fibres of a column along the geometrical trajectory of incident particles are typically grouped to one pixel of a multi-channel read-out device. In some applications the incident particles will cross the detection plane with large angles w.r.t. the normal to the layers. Then, the packing of the fibres needs to be adapted to the incident particles and the columns need to be inclined. In this paper possible fibre array geometries are shown, relevant design criteria for detectors are discussed, and the effect of diverging particles incident on fibre arrays was studied using a Monte Carlo simulation.Comment: submitted to Nucl. Instrum. Meth.

    Prototype design of a timing and fast control system in the CBM experiment

    Get PDF
    The Compressed Baryonic Matter (CBM) experiment is designed to handle interaction rates of up to 10 MHz and up to 1 TB/s of raw data generated. With triggerless streaming data acquisition in the experiment and beam intensity fluctuations, it is expected that occasional data bursts will surpass bandwidth capabilities of the Data Acquisition System (DAQ) system. In order to preserve integrity of event data, the bandwidth of DAQ must be throttled in an organised way with minimum information loss. The Timing and Fast Control (TFC) system provides a latency-optimised datapath for throttling commands and distributes a system clock together with a global timestamp. This paper describes a prototype design of the system with focus on synchronisation and its evaluation

    T1 Mapping Quantifies Spinal Cord Compression in Patients With Various Degrees of Cervical Spinal Canal Stenosis

    Get PDF
    Age-related degeneration of the cervical spinal column is the most common cause of spinal cord lesions. T1 mapping has been shown to indicate the grade and site of spinal cord compression in low grade spinal canal stenosis (SCS). Aim of our study was to further investigate the diagnostic potential of a novel T1 mapping method at 0.75 mm resolution and 4 s acquisition time in 31 patients with various grades of degenerative cervical SCS. T1 mapping was performed in axial sections of the stenosis as well as above and below. Included subjects received standard T2-weighted MRI of the cervical spine (including SCS-grading 0-III), electrophysiological, and clinical examination. We found that patients with cervical SCS showed a significant difference in T1 relaxation times within the stenosis (727 ± 66 ms, mean ± standard deviation) in comparison to non-stenotic segments above (854 ± 104 ms, p < 0.001) and below (893 ± 137 ms, p < 0.001). There was no difference in mean T1 in non-stenotic segments in patients (p = 0.232) or between segments in controls (p = 0.272). Mean difference of the T1 relaxation times was significantly higher in grade III stenosis (234 ± 45) vs. in grade II stenosis (176 ± 45, p = 0.037) vs. in grade I stenosis (90 ± 87 ms, p = 0.010). A higher difference in T1 relaxation time was associated with a central efferent conduction deficit. In conclusion, T1 mapping may be useful as a tool for SCS quantification in all grades of SCS, including high-grade stenosis with myelopathy signal in conventional T2-weighted imaging

    Prototype design of a timing and fast control system in the CBM experiment

    Get PDF
    The Compressed Baryonic Matter (CBM) experiment is designed to handle interaction rates of up to 10 MHz and up to 1 TB/s of raw data generated. With triggerless streaming data acquisition in the experiment and beam intensity fluctuations, it is expected that occasional data bursts will surpass bandwidth capabilities of the Data Acquisition System (DAQ) system. In order to preserve integrity of event data, the bandwidth of DAQ must be throttled in an organised way with minimum information loss. The Timing and Fast Control (TFC) system provides a latency-optimised datapath for throttling commands and distributes a system clock together with a global timestamp. This paper describes a prototype design of the system with focus on synchronisation and its evaluation

    Colour reconnections in Herwig++

    Get PDF
    We describe the implementation details of the colour reconnection model in the event generator Herwig++. We study the impact on final-state observables in detail and confirm the model idea from colour preconfinement on the basis of studies within the cluster hadronization model. Moreover, we show that the description of minimum bias and underlying event data at the LHC is improved with this model and present results of a tune to available data.Comment: 19 pages, 21 figures, 2 tables. Matches with published versio

    A 3D track finder for the Belle II CDC L1 trigger

    Get PDF
    Machine learning methods are integrated into the pipelined first level (L1) track trigger of the upgraded flavor physics experiment Belle II at KEK in Tsukuba, Japan. The novel triggering techniques cope with the severe background from events outside the small collision region provided by the new SuperKEKB asymmetric-energy electron-positron collider. Using the precise drift-time information of the central drift chamber which provides axial and stereo wire layers, a neural network L1 trigger estimates the 3D track parameters of tracks, based on input from the axial wire planes provided by a 2D track finder. An extension of this 2D Hough track finder to a 3D finder is proposed, where the single hit representations in the Hough plane are trained using Monte Carlo. This 3D finder improves the track finding efficiency by including the stereo sense wires as input. The estimated polar track angle allows a specialization of the subsequent neural networks to sectors in the polar angle
    corecore