17,904 research outputs found
Unravelling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud
Since the 1980's discovery of the large (2x10^9 Msun) intergalactic cloud
known as the Leo Ring, this object has been the center of a lively debate about
its origin. Determining the origin of this object is still important as we
develop a deeper understanding of the accretion and feedback processes that
shape galaxy evolution. We present HST/COS observations of three sightlines
near the Ring, two of which penetrate the high column density neutral hydrogen
gas visible in 21 cm observations of the object. These observations provide the
first direct measurement of the metallicity of the gas in the Ring, an
important clue to its origins. Our best estimate of the metallicity of the ring
is ~10% Zsun, higher than expected for primordial gas but lower than expected
from an interaction. We discuss possible modifications to the interaction and
primordial gas scenarios that would be consistent with this metallicity
measurement.Comment: 11 pages, 7 figures, accepted Ap
Resolution-enhanced Mapping Spectrometer
A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound
A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs
We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each
containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of
a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell
consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally
in both directions from the two base leads, an output antenna which extends vertically in both directions
from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed
between a pair of crossed polarizers. The horizontally polarized input wave passes through the input
polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which
radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual
functions, providing both input-output isolation as well as independent impedance matching for the input
and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate
that output powers of several watts per square centimeter of grid area should be attainable with optimized
structures
Beta lives - some statistical perspectives on the capital asset pricing model
This note summarizes some technical issues relevant to the use of the idea of excess return in empirical modelling. We cover the case where the aim is to construct a measure of expected return on an asset and a model of the CAPM type is used. We review some of the problems and show examples where the basic CAPM may be used to develop other results which relate the expected returns on assets both to the expected return on the market and other factors
Pfleiderer2: identification of a new globular cluster in the Galaxy
We provide evidence that indicate the star cluster Pfleiderer 2, which is
projected in a rich field, as a newly identified Galactic globular cluster.
Since it is located in a crowded field, core extraction and decontamination
tools were applied to reveal the cluster sequences in B, V and I
Color-Magnitude Diagrams (CMDs). The main CMD features of Pfleiderer 2 are a
tilted Red Giant Branch, and a red Horizontal Branch, indicating a high
metallicity around solar. The reddening is E(B-V)=1.01. The globular cluster is
located at a distance from the Sun d = 162 kpc.
The cluster is located at 2.7 kpc above the Galactic plane and at a distance
from the Galactic center of R=9.7 kpc, which is unusual for a
metal-rich globular cluster.Comment: Accepted by The Astronomical Journa
The Diverse Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies
We present mid-infrared Spitzer Space Telescope observations of a complete
sample of star-forming dwarf galaxies selected from the KPNO International
Spectroscopic Survey. The galaxies span a wide range in mid-infrared
properties. Contrary to expectations, some of the galaxies emit strongly at 8
micron indicating the presence of hot dust and/or PAHs. The ratio of this
mid-infrared dust emission to the stellar emission is compared with the
galaxies' luminosity, star-formation rate, metallicity, and optical reddening.
We find that the strength of the 8.0 micron dust emission to the stellar
emission ratio is more strongly correlated with the star-formation rate than it
is with the metallicity or the optical reddening in these systems. Nonetheless,
there is a correlation between the 8.0 micron luminosity and metallicity. The
slope of this luminosity-metallicity correlation is shallower than
corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0
micron emission seen in these galaxies (i.e., PAH versus hot dust or some
combination of the two) will require future study, including deep mid-IR
spectroscopy.Comment: 14 pages, accepted Ap
Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties
Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Perturbations of cell interactions, an early event in acute renal injury, have important pathophysiologic consequences. We hypothesized that promotion of cell interactions protects cells from injury. To test this hypothesis, a single cell suspension of LLC-PK1 cells (porcine proximal tubular cell line) treated with albumin (control) was compared to cells aggregated with fibrinogen or purified human clusterin (aggregation graded 0 to 4). Following aggregation, the cells were injured with 1.5 mM hydrogen peroxide (H2O2) for three hours. Cell aggregation induced by clusterin but not fibrinogen protected against oxidant injury by H2O2. Complete abrogation of cytotoxicity occurred at a clusterin concentration of 2.5 μg/ml, which resulted in an aggregation score of 1. In the absence of aggregation, clusterin at concentrations of 20 and 50 μg/ml, but not lower doses, partially protected against injury induced by H2O2. Cell aggregation induced by both clusterin and fibrinogen partially protected against endogenously generated oxidant stress induced by incubating LLC-PK1 cells with aminotriazole and 1-chloro-2,4-dinitrobenzene (CDNB). In conclusion, clusterin protects against models of oxidant stress in vitro, whether generated by exogenously administered hydrogen peroxide, or from endogenously produced peroxide, and such protective effects can accrue from aggregative and nonaggregative properties of clusterin
Keeping Humans in the Loop: Pooling Knowledge through Artificial Swarm Intelligence to Improve Business Decision Making
This article explores how a collaboration technology called Artificial Swarm Intelligence (ASI) addresses the limitations associated with group decision making, amplifies the intelligence of human groups, and facilitates better business decisions. It demonstrates of how ASI has been used by businesses to harness the diverse perspectives that individual participants bring to groups and to facilitate convergence upon decisions. It advances the understanding of how artificial intelligence (AI) can be used to enhance, rather than replace, teams as they collaborate to make business decisions
- …