7,240 research outputs found

    Shortening of the Short Refractory Periods in Short QT Syndrome.

    Get PDF
    BACKGROUND: Diagnosis of short QT syndrome (SQTS) remains difficult in case of borderline QT values as often found in normal populations. Whether some shortening of refractory periods (RP) may help in differentiating SQTS from normal subjects is unknown. METHODS AND RESULTS: Atrial and right ventricular RP at the apex and right ventricular outflow tract as determined during standard electrophysiological study were compared between 16 SQTS patients (QTc 324±24 ms) and 15 controls with similar clinical characteristics (QTc 417±32 ms). Atrial RP were significantly shorter in SQTS compared with controls at 600- and 500-ms basic cycle lengths. Baseline ventricular RP were significantly shorter in SQTS patients than in controls, both at the apex and right ventricular outflow tract and for any cycle length. Differences remained significant for RP of any subsequent extrastimulus at any cycle length and any pacing site. A cut-off value of baseline RP <200 ms at the right ventricular outflow tract either at 600- or 500-ms cycle length had a sensitivity of 86% and a specificity of 100% for the diagnosis of SQTS. CONCLUSIONS: Patients with SQTS have shorter ventricular RP than controls, both at baseline during various cycle lengths and after premature extrastimuli. A cut-off value of 200 ms at the right ventricular outflow tract during 600- and 500-ms basic cycle length may help in detecting true SQTS from normal subjects with borderline QT values

    Magnetic Skyrmions Under Confinement

    Get PDF
    We present a variational treatment of confined magnetic skyrmions in a minimal micromagnetic model of ultrathin ferromagnetic films with interfacial Dzylashinksii-Moriya interaction (DMI) in competition with the exchange energy, with a possible addition of perpendicular magnetic anisotropy. Under Dirichlet boundary conditions that are motivated by the asymptotic treatment of the stray field energy in the thin film limit we prove existence of topologically non-trivial energy minimizers that concentrate on points in the domain as the DMI strength parameter tends to zero. Furthermore, we derive the leading order non-trivial term in the Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Γ\Gamma \end{document}-expansion of the energy in the limit of vanishing DMI strength that allows us to completely characterize the limiting magnetization profiles and interpret them as particle-like states whose radius and position are determined by minimizing a renormalized energy functional. In particular, we show that in our setting the skyrmions are strongly repelled from the domain boundaries, which imparts them with stability that is highly desirable for applications. We provide explicit calculations of the renormalized energy for a number of basic domain geometries

    Population-genomic insights into emergence, crop-adaptation, and dissemination of Pseudomonas syringae pathogens

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Many bacterial pathogens are well characterized but, in some cases, relatively little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae.Caroline L. Monteil received support from INRA and the European Union, in the framework of the Marie-Curie FP7 COFUND People Programme, through the award of an AgreenSkills’ fellowship (under grant agreement n° 267196). Research in Boris A. Vinatzer’s laboratory and genome sequencing was funded by the National Science Foundation of the USA (grants IOS-1354215 and DEB-1241068). Funding for work in the Vinatzer laboratory was also provided in part by the Virginia Agricultural Experiment Station and the Hatch Program of the National Institute of Food and Agriculture, U.S. Department of Agriculture. Work carried out in the Sheppard laboratory was supported by the Medical Research Council (MRC) grant MR/L015080/1, and the Wellcome Trust grant 088786/C/09/Z. GM was supported by a NISCHR Health Research Fellowship (HF-14-13)

    Rare-earth-activated glasses for solar energy conversion

    Get PDF
    The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cut-off phonon energy are mandatory. In this paper we present some results concerning 70SiO2-30HfO2 glass ceramic planar waveguides co-activated by Tb3+/Yb3+ ions, fabricated by sol gel route using a top-down approach, and a bulk fluoride glass of molar composition 70ZrF4 23.5LaF3 0.5AlF3 6GaF3 co-activated by Pr3+/Yb3+ ion. Attention is focused on the assessment of the energy transfer efficiency between the two couples of rare earth ions in the different hosts

    Optical properties of cubic AlGaN

    Get PDF
    In this work we report optical characterization on several cubic c-AlGaN layers grown by MBE on SiC on Si pseudo-substrates, with different aluminum concentrations ranging from 0 to 70 %. Excitation power evolution of AlGaN photoluminescence (PL) spectra as well as reflectivity spectra allow to attribute PL peak to band gap recombination. PL energy dependence versus aluminum concentration is given. Reflectivity investigations are performed in the energy range between 1.5 eV and 4 eV on the samples. Theoretical calculations of multilayered structure reflectivity are fitted to experimental results, allowing an accurate determination of refractive index evolution versus Al concentration. From this analysis, qualitative information about interface roughness at AlGaN/SiC is also be derived.SFERERegion RhĂŽne-AlpesConsejo Nacional de Ciencia y TecnologĂ­
    • 

    corecore