25 research outputs found
Lipoate Metabolism in Staphylococcus Aureus Pathogenesis
Lipoate is an essential cofactor of several proteins involved in cellular energy homeostasis and catabolism. Lipoate metabolism has been linked to pathogenesis in some microbial species, but its role in Staphylococcus aureus infections had not been explored. In this thesis, we tested the hypothesis that lipoate acquisition mechanisms promote S. aureus infectivity. We used a bacterial genetics approach to elucidate the biological function of the S. aureus genes involved in lipoate metabolism. Our findings allowed us to propose a model for lipoic acid de novo biosynthesis and salvage pathways in S. aureus. Moreover, we detail hitherto undescribed genetic arrangements of lipoate de novo biosynthesis and salvage genes in the S. aureus genome, which suggest a potential role for lipoate acquisition mechanisms in metabolic regulation and oxidative stress defense. Also, we have identified critical requirements for gene products involved in lipoate metabolism in murine sepsis. Our data indicate that S. aureus is capable of using bacterial and host-derived lipoate during infection in a tissue-specific manner, thereby promoting survival in diverse nutrient-restricted environments. Overall, our findings suggest that the S. aureus lipoate de novo biosynthesis and salvage pathways offer potential for the development of novel therapeutics that target key metabolic programs in S. aureu
Genomic diversity in Fructobacillus spp. isolated from fructose-rich niches
The Fructobacillus genus is a group of obligately fructophilic lactic acid bacteria (FLAB) that requires the use of fructose or another electron acceptor for their growth. In this work, we performed a comparative genomic analysis within the genus Fructobacillus by using 24 available genomes to evaluate genomic and metabolic differences among these organisms. In the genome of these strains, which varies between 1.15- and 1.75-Mbp, nineteen intact prophage regions, and seven complete CRISPR-Cas type II systems were found. Phylogenetic analyses located the studied genomes in two different clades. A pangenome analysis and a functional classification of their genes revealed that genomes of the first clade presented fewer genes involved in the synthesis of amino acids and other nitrogen compounds. Moreover, the presence of genes strictly related to the use of fructose and electron acceptors was variable within the genus, although these variations were not always related to the phylogeny.Fil: Mohamed, MarÃa Florencia. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Ruiz RodrÃguez, Luciana Gabriela. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Zorzoli, Maria Azul. University of Dundee. School of Life Sciences. Division of Molecular Microbiology; Reino Unido. Consejo Nacional de Investigaciones CientÃficas y Técnicas; ArgentinaFil: Dorfmueller, Helge C.. University of Dundee. School of Life Sciences. Division of Molecular Microbiology; Reino UnidoFil: Raya, Raul Ricardo. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin
Transitioning from Triton X-100 to Tergitol 15-S-9:impacts on diagnostic assays using viral PCRÂ sample solution
In 2019, the European Union banned Triton X-100, a detergent widely used in laboratory diagnostics, including the Viral PCR Sample Solution (VPSS), and urged manufacturers to find environmentally sustainable alternatives. Tergitol 15-S-9 (VPSS2) has been proposed as an alternative surfactant. This multicenter study evaluated the effectiveness of VPSS2, a Tergitol-based viral solution, as a replacement for VPSS. Our results show the equivalent performance of VPSS2 to VPSS for nucleic acid extraction and viral stability over time at different temperatures. The new VPSS formulation was also tested against external quality assurance panels and clinical samples. The results of this work support adopting this modified viral PCR sample solution to replace Triton X-100-containing viral transport solutions.</p
Evaluation of SARS-CoV-2 antibody point of care devices in the laboratory and clinical setting
SARS-CoV-2 antibody tests have been marketed to diagnose previous SARS-CoV-2 infection and as a test of immune status. There is a lack of evidence on the performance and clinical utility of these tests. We aimed to carry out an evaluation of 14 point of care (POC) SARS-CoV-2 antibody tests. Serum from participants with previous RT-PCR (real-time polymerase chain reaction) confirmed SARS-CoV-2 infection and pre-pandemic serum controls were used to determine specificity and sensitivity of each POC device. Changes in sensitivity with increasing time from infection were determined on a cohort of study participants. Corresponding neutralising antibody status was measured to establish whether the detection of antibodies by the POC device correlated with immune status. Paired capillary and serum samples were collected to ascertain whether POC devices performed comparably on capillary samples. Sensitivity and specificity varied between the POC devices and in general did not meet the manufacturers’ reported performance characteristics, which signifies the importance of independent evaluation of these tests. The sensitivity peaked at ≥20 days following onset of symptoms, however sensitivity of 3 of the POC devices evaluated at extended time points showed that sensitivity declined with time. This was particularly marked at >140 days post infection. This is relevant if the tests are to be used for sero-prevalence studies. Neutralising antibody data showed that positive antibody results on POC devices did not necessarily confer high neutralising antibody titres, and that these POC devices cannot be used to determine immune status to the SARS-CoV-2 virus. Comparison of paired serum and capillary results showed that there was a decline in sensitivity using capillary blood. This has implications in the utility of the tests as they are designed to be used on capillary blood by the general population
Streptococcal dTDP-L-rhamnose biosynthesis enzymes:functional characterization and lead compound identification
Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC 50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria