658 research outputs found

    Progression from ocular hypertension to visual field loss in the English hospital eye service

    Get PDF
    Background There are more than one million National Health Service visits in England and Wales each year for patients with glaucoma or ocular hypertension (OHT). With the ageing population and an increase in optometric testing, the economic burden of glaucoma-related visits is predicted to increase. We examined the conversion rates of OHT to primary open-angle glaucoma (POAG) in England and assessed factors associated with risk of conversion. Methods Electronic medical records of 45 309 patients from five regionally different glaucoma clinics in England were retrospectively examined. Conversion to POAG from OHT was defined by deterioration in visual field (two consecutive tests classified as stage 1 or worse as per the glaucoma staging system 2). Cox proportional hazards models were used to examine factors (age, sex, treatment status and baseline intraocular pressure (IOP)) associated with conversion. Results The cumulative risk of conversion to POAG was 17.5% (95% CI 15.4% to 19.6%) at 5 years. Older age (HR 1.35 per decade, 95% CI 1.22 to 1.50, p<0.001) was associated with a higher risk of conversion. IOP-lowering therapy (HR 0.45, 95% CI 0.35 to 0.57, p<0.001) was associated with a lower risk of conversion. Predicted 5-year conversion rates for treated and untreated groups were 14.0% and 26.9%, respectively. Conclusion Less than one-fifth of OHT patients managed in glaucoma clinics in the UK converted to POAG over a 5-year period, suggesting many patients may require less intensive follow-up. Our study provides real-world evidence for the efficacy of current management (including IOP-lowering treatment) at reducing risk of conversion

    Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO2 uptake and CO2/N2 selectivity

    Get PDF
    There is a growing interest in developing renewable biomass-based adsorbents to be used in numerous applications, including CO2 capture in postcombustion conditions. In the present study, several activated carbons (ACs) were produced from vine shoots-derived biochar through both physical and chemical activation using CO2 and KOH, respectively. The performance of these ACs was tested in terms of CO2 uptake capacity at an absolute pressure of 15 kPa and at different temperatures (0, 25, and 75 °C), apparent selectivity towards CO2 over N2, and isosteric heat of adsorption. At 25 °C, the chemically ACs with KOH impregnation exhibited the highest CO2 adsorption capacity, which was similar or even higher than those recently reported for a number of carbon-based adsorbents. However, the AC prepared through physical activation with CO2 at 800 °C and a soaking time of 1 h appears as the most promising adsorbent analyzed here, due to its higher CO2 uptake capacity and adsorption rate at relatively high temperature (75 °C), its relatively high selectivity at this temperature, and its apparently low energy demand for regeneration. Given that physical activation with CO2 is more feasible at industrial scale than chemical activation using corrosive alkalis, the results reported here are encouraging for further development of vine shoots-derived adsorbents

    Epidemiology of sports injuries in european union countries

    Full text link
    La práctica deportiva es una actividad que se recomienda para mantener y promocionar la salud y los buenos hábitos. Sin embargo puede acarrear un riesgo importante de lesiones. Este estudio presenta, mediante técnicas de análisis multivariante, la relación que existe entre la tipo de lesiones, lugares del cuerpo donde se producen, los deportes más populares; fútbol, baloncesto, voleibol, y gimnasia, edad y países donde se practica, tomando datos de cinco países de la Unión Europea. Si relacionamos estas características entre sí, podemos elaborar estrategias específicas al tipo de deporte y país donde se practica, con el objeto de mejorar la prevención y poder disminuir la cantidad de lesiones que se producen.Participation in sports is a health promotion activity and maintains good habits that entail an important injury risk. The present article is a study using Multivariatye Analysis, the relationship between type of injury, location of injury, the most popular sports; soccer, basketball, volleyball, gymnastics, county where it has been practiced and age, in five European Union countries. With these relationships, we can develop specific strategies to improve prevention and to reduce the injuries that occur

    Pyrolysis and char reactivity of a poor-quality refuse-derived fuel (RDF) from municipal solid waste

    Get PDF
    The present study focuses on analyzing the pyrolysis and combustion behaviors of a refuse-derived fuel (RDF), which is generated in a MSW treatment plant located in Zaragoza (Spain). Pyrolysis experiments were carried out in a TGA apparatus and a fixed-bed reactor at different peak temperatures (400 and 600 °C) and heating rates (5 and 40 °C min- 1). The reactivity towards oxygen of produced chars was also measured in the same TGA device at a heating rate of 10 °C min- 1 and a final temperature of 800 °C. Pyrolysis results were significantly affected by peak temperature and heating rate. The found effect of peak temperature on char and fixed-carbon yields as well as on measured properties (H:C and O:C ratios, BET surface area and average pore diameter) was in agreement with previous studies. However, the effect of heating rate, especially on the release rate of volatiles, could be explained by a change in the pyrolysis reaction scheme. The RDF-derived chars obtained at the highest heating rate showed a higher reactivity in air. In addition, an increase in peak temperature also led to a higher reactivity. This result can indicate that the carbon present in the RDF-derived char is dispersed within an ash matrix containing a high number of active sites, the distribution of which could be improved when heating rate (and, to a lesser extent, peak temperature) is increased. The addition of 10 wt.% RDF to two-phase olive mill waste prior to slow pyrolysis led to an apparent increase in the carbonization efficiency as well as to an enhancement of the resultant char''s reactivity in air

    Influence of pressure and temperature on key physicochemical properties of corn stover-derived biochar

    Get PDF
    This study focuses on analyzing the effect of both the peak temperature and pressure on the properties of biochar produced through slow pyrolysis of corn stover, which is a common agricultural waste that currently has little or no value. The pyrolysis experiments were carried out in a fixed-bed reactor at different peak temperatures (400, 525 and 650 °C) and absolute pressures (0.1, 0.85 and 1.6 MPa). The inert mass flow rate (at NTP conditions) was adjusted in each test to keep the gas residence time constant within the reactor. The as-received corn stover was pyrolyzed into a biochar without any physical pre-treatment as a way to reduce the operating costs. The properties of biochars showed that high peak temperature led to high fixed-carbon contents, high aromaticity and low molar H:C and O:C ratios; whereas a high pressure only resulted in a further decrease in the O:C ratio and a further increase in the fixed-carbon content. Increasing the operating pressure also resulted in a higher production of pyrolysis gas at the expense of water formation

    Developing a water-energy-GHG emissions modeling framework: Insights from an application to California's water system

    Full text link
    [EN] Integrating processes of water and energy interdependence in water systems can improve the understanding of the tradeoffs between water and energy in management and policy. This study presents a development of an integrated water resources management model that includes water-related energy use and GHG emissions. We apply the model to a simplified representation of California's water system. Accounting for water demands from cities, agriculture, environment and the energy sector, and combining a surface water management model with a simple groundwater model, the model optimizes water use across sectors during shortages from an economic perspective, calculating the associated energy use and electricity generation for each water demand. The results of California's water system show that urban end-uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Different policy scenarios show the significant tradeoffs between water, energy, and GHG emissions.Escrivà Bou, À.; Lund, J.; Pulido-Velazquez, M.; Hui, R.; Medellín-Azuara, J. (2018). Developing a water-energy-GHG emissions modeling framework: Insights from an application to California's water system. Environmental Modelling & Software. 109:54-65. doi:10.1016/j.envsoft.2018.07.011S546510

    Study on the effects of using a carbon dioxide atmosphere on the properties of vine shoots-derived biochar

    Get PDF
    This study analyzes the effects of using a different atmosphere (pure N2 or pure CO2) at two levels of absolute pressure (0.1 and 1.1 MPa) on the pyrolysis of vine shoots at a constant peak temperature of 600 °C. Recycling CO2 from residual flue gases into the pyrolysis process may be economically beneficial, since CO2 can replace the use of an expensive N2 environment. In addition, the use of a moderate pressure (e.g., 1.1 MPa) can result in higher carbonization efficiencies and an improvement in the pyrolysis gas (in terms of yield and composition). Results from our study suggest that the use of CO2 instead of N2 as pyrolysis environment led to similar carbonization efficiencies (i.e., fixed-carbon yields) and mass yields of biochar. The chemical properties related to the potential stability of biochar (i.e., fixed-carbon content and molar H:C and O:C ratios) were very similar for both pyrolysis atmospheres. Under an atmosphere of CO2, the yield of produced CO2 was drastically decreased at the expense of an increase in the yield of CO, probably as a consequence of the promotion of the reverse Boudouard reaction, especially at high pressure. The enhanced reverse Boudouard reaction can also explain the relatively high BET specific surface area and the macro-porosity development observed for the biochar produced under a CO2 environment at 1.1 MPa. In summary, the pressurized pyrolysis of biomass under an atmosphere of CO2 appears as a very interesting route to produce highly stable and porous biochars and simultaneously improving the yield of CO

    Effect of water activity in tortilla and its relationship on the acrylamide content after frying

    Get PDF
    The objective of this study was to relate the tortilla minimum integral desorption entropy with acrylamide content during processing of tortilla chips. Tortilla pieces were stored at 30 °C at aw of 0.11-0.84 for 4 days and fried later in soybean oil at 180 °C for 25 s. The lowest acrylamide content was observed in tortilla chips made of non-stored tortilla (aw = 0.98) as well as in those prepared from tortilla stored in the minimum integral entropy (aw = 0.53). In addition, the color and texture values were similar in both cases. These results suggest that the reduction of the acrylamide content during processing of tortilla chips and other tortilla based foods thermally processed might be modified by factors such as moisture content, aw, and the physical state of water in the tortilla. Thus, the minimum integral entropy showed to be a reliable indicator to establish the most appropriate moisture conditions to obtain tortilla chips with reduced level of acrylamide when tortilla is dehydrated. © 2014 Elsevier Ltd. All rights reserved.We are indebted to Juan Veles, Edmundo Gutierrez, Carlos Alberto Ávila, Araceli Mauricio and Veronica Flores from CINVESTAV Querétaro for their technical assistance.Peer Reviewe

    Distinct mechanisms regulate Cdx2 expression in the blastocyst and in trophoblast stem cells

    Get PDF
    The first intercellular differences during mammalian embryogenesis arise in the blastocyst, producing the inner cell mass and the trophectoderm. The trophectoderm is the first extraembryonic tissue and does not contribute to the embryo proper, its differentiation instead forming tissues that sustain embryonic development. Crucial roles in extraembryonic differentiation have been identified for certain transcription factors, but a comprehensive picture of the regulation of this early specification is still lacking. Here, we investigated whether the regulatory mechanisms involved in Cdx2 expression in the blastocyst are also utilized in the postimplantation embryo. We analyzed an enhancer that is regulated through Hippo and Notch in the blastocyst trophectoderm, unexpectedly finding that it is inactive in the extraembryonic structures at postimplantation stages. Further analysis identified other Cdx2 regulatory elements including a stem-cell specific regulatory sequence and an element that drives reporter expression in the trophectoderm, a subset of cells in the extraembryonic region of the postimplantation embryo and in trophoblast stem cells. The cross-comparison in this study of cis-regulatory elements employed in the blastocyst, stem cell populations and the postimplantation embryo provides new insights into early mammalian development and suggests a two-step mechanism in Cdx2 regulation.We thank Barbara Pernaute for comments and suggestions; members of the Manzanares lab for comments, technical help and support; Ian Chambers and Austin Smith for the ZHBTc4 ES cell line; Tristan Rodriguez for the B1-TS cell line; Luis Miguel Criado and the CNIC Transgenesis Unit for TS cell morulae injections and support; Roisin Doohan for help with sections; and Simon Bartlett (CNIC) for English editing. This study was funded by grants from the Ministerio de Economia y Competitividad (grant BFU2011-23083 and BFU2014-54608-P to MM; FPU Doctoral Fellowship to TR; FPI-SO Doctoral Fellowship to SM; Severo Ochoa Center of Excellence award SEV-2015-0505 to CNIC), Comunidad Autonoma de Madrid (grant CELLDD-CM to MM), Canadian Institute of Health Research (JR), Imperial College (VA), and the MRC and Genesis Research Trust (AH). The CNIC is supported by the Spanish Ministerio de Economia y Competitividad and the Pro-CNIC Foundation.S
    corecore