25 research outputs found
Phytochemical and biological activity studies on Nasturtium officinale (watercress) microshoot cultures grown in RITA temporary immersion systems
The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties
Co-Administration of a Plasmid DNA Encoding IL-15 Improves Long-Term Protection of a Genetic Vaccine against Trypanosoma cruzi
Background: Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS) gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. the goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15) could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS) alone.Methodology: We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-gamma ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-gamma, TNF-alpha, and IL-2), tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-gamma responses and survived a lethal challenge given within the first 3 months following immunization. the addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro restimulation.Conclusion: Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.National Institutes of HealthFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)Millennium Institute for Gene TherapySt Louis Univ, Dept Internal Med, St Louis, MO 63103 USAUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilSt Louis Univ, Dept Mol Microbiol, St Louis, MO 63103 USAUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Microbiol, Belo Horizonte, MG, BrazilUniversidade Federal de São Paulo, Ctr Terapia Celular & Mol, Escola Paulista Med, São Paulo, BrazilNational Institutes of Health: RO1 AI040196CNPq: 420067/2005-1Web of Scienc
Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection
Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection
Internal Branding : Understanding Brand Values
Purpose- The purpose of the study was to investigate how employees perceive and understand their company brand values. The aim was to show the importance of internal branding when communicating brand values in an organization to employees. Design/methodology/approach- The methodology used in this research was a quantitative survey study. Three warehouses were chosen for the study, in Älmhult, Helsingborg and Malmö. The sample was 129 employees and questionnaires were handed out to them. The data from the questionnaires were analyzed in the data program SPSS. Findings- Result from the study shows that the employees have a good understanding and share a mutual perception about the brand values. Although the employees have good knowledge the study shows that they are not committed on a personal level to the brand values. Since internal branding is about implementing the brand values with the employees the result shows that the internal branding is not as embedded as it should be in the organization. Research limitations and implications- Due to the timeframe given, the research was a cross- sectional study. A suggestion for future research is to do a longitudinal design in order to see changes over time. A theoretical implication is given to the two concepts of brand citizenship behavior and brand commitment since the results in this research are different from other studies. For the managerial implications, the commitment to the brand should be taken into consideration in the internal branding process. Originality/ value- The value that this study brings is to the internal branding process by showing the lack of brand commitment even though the knowledge about the brand values are high
Impacts of elicitors on metabolite production and on antioxidant potential and tyrosinase inhibition in watercress microshoot cultures
ABSTRACT: The study has proved the stimulating effects of different strategies of treatments with elicitors on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in watercress (Nasturtium officinale) microshoot cultures. The study also assessed antioxidant and anti-melanin activities. The following elicitors were tested: ethephon (ETH), methyl jasmonate (MeJA), sodium salicylate (NaSA), and yeast extract (YeE) and were added on day 10 of the growth period. Cultures not treated with the elicitor were used as control. The total GSL content estimations and UHPLC-DAD-MS/MS analyses showed that elicitation influenced the qualitative and quantitative profiles of GSLs. MeJA stimulated the production of gluconasturtiin (68.34 mg/100 g dried weight (DW)) and glucobrassicin (65.95 mg/100 g DW). The elicitation also increased flavonoid accumulation (max. 1131.33 mg/100 g DW, for 100 μM NaSA, collection after 24 h). The elicitors did not boost the total polyphenol content. NaSA at 100 μM increased the production of total chlorophyll a and b (5.7 times after 24 h of treatment), and 50 μM NaSA caused a 6.5 times higher production of carotenoids after 8 days of treatment. The antioxidant potential (assessed with the CUPRAC FRAP and DPPH assays) increased most after 24 h of treatment with 100 μM MeJA. The assessment of anti-melanin activities showed that the microshoot extracts were able to cause inhibition of tyrosinase (max. 27.84% for 1250 µg/mL). KEY POINTS: • Elicitation stimulated of the metabolite production in N. officinale microshoots. • High production of pro-health glucosinolates and polyphenols was obtained. • N. officinale microshoots have got tyrosinase inhibition potential. • The antioxidant potential of N. officinale microshoots was evaluated. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00253-021-11743-8
Precursor-boosted production of metabolites in Nasturtium officinale microshoots grown in plantform bioreactors, and antioxidant and antimicrobial activities of biomass extracts
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL)
A new recombinant bacille Calmette-Guérin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers.
BackgroundOne strategy for improving anti-tuberculosis (TB) vaccination involves the use of recombinant bacille Calmette-Guérin (rBCG) overexpressing protective TB antigens. rBCG30, which overexpresses the Mycobacterium tuberculosis secreted antigen Ag85b, was the first rBCG shown to induce significantly greater protection against TB in animals than parental BCG.MethodsWe report here the first double-blind phase 1 trial of rBCG30 in 35 adults randomized to receive either rBCG30 or parental Tice BCG intradermally. Clinical reactogenicity was assessed, and state-of-the-art immunological assays were used to study Ag85b-specific immune responses induced by both vaccines.ResultsSimilar clinical reactogenicity occurred with both vaccines. rBCG30 induced significantly increased Ag85b-specific T cell lymphoproliferation, interferon (IFN)-gamma secretion, IFN-gamma enzyme-linked immunospot responses, and direct ex vivo intracellular IFN-gamma responses. Additional flow cytometry studies measuring carboxyfluorescein succinimidyl ester dilution and intracellular cytokine production demonstrated that rBCG30 significantly enhanced the population of Ag85b-specific CD4(+) and CD8(+) T cells capable of concurrent expansion and effector function. More importantly, rBCG30 significantly increased the number of Ag85b-specific T cells capable of inhibiting intracellular mycobacteria.ConclusionsThese results provide proof of principal that rBCG can safely enhance human TB immunity and support further development of rBCG overexpressing Ag85b for TB vaccination