48 research outputs found

    HIV-1 Subtype distribution in morocco based on national sentinel surveillance data 2004-2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about HIV-1 subtype distribution in Morocco. Some data suggest an emergence of new HIV subtypes. We conducted phylogenetic analysis on a nationally representative sample of 60 HIV-1 viral specimens collected during 2004-2005 through the Morocco national HIV sentinel surveillance survey.</p> <p>Results</p> <p>While subtype B is still the most prevalent, 23.3% of samples represented non-B subtypes, the majority of which were classified as CRF02_AG (15%). Molecular clock analysis confirmed that the initial introduction of HIV-1B in Morocco probably came from Europe in the early 1980s. In contrast, the CRF02_AG strain appeared to be introduced from sub-Saharan Africa in two separate events in the 1990s.</p> <p>Conclusions</p> <p>Subtype CRF02_AG has been emerging in Morocco since the 1990s. More information about the factors introducing HIV subtype-specific transmission will inform the prevention strategy in the region.</p

    Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae

    Get PDF
    Predicting how pathogen populations will change over time is challenging. Such has been the case withStreptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.Peer reviewe

    Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci

    Get PDF
    Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3–31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939–1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development

    Long-term intrahost evolution of methicillin resistant Staphylococcus aureus among cystic fibrosis patients with respiratory carriage

    No full text
    Staphylococcus aureus is the most commonly identified airway colonizer of cystic fibrosis (CF) patients, and infections with methicillin-resistant S. aureus (MRSA) are associated with poor outcomes. Yet, little is known about the intrahost evolution of S. aureus among CF patients. We investigated convergent evolution and adaptation of MRSA among four CF patients with long-term respiratory carriage. For each patient, we performed whole-genome sequencing on an average of 21 isolates (range: 19-23) carried for a mean of 1,403 days (range: 903-1,679), including 25 pairs of isolates collected on the same day. We assessed intrahost diversity, population structure, evolutionary history, evidence of switched intergenic regions (IGRs), and signatures of adaptation in the context of patient age, antibiotic treatment, and co-colonizing microbes. Phylogenetic analysis delineated distinct multilocus sequence type ST5 (n = 3) and ST72 (n = 1) clonal populations in addition to sporadic, non-clonal isolates, and uncovered a putative transmission event. Variation in antibiotic resistance was observed within clonal populations, even among isolates collected on the same day. Rates of molecular evolution ranged from 2.21 to 8.64 nucleotide polymorphisms per year, and lineage ages were consistent with acquisition of colonization in early childhood followed by subsequent persistence of multiple sub-populations. Selection analysis of 1,622 core genes present in all four clonal populations (n = 79) found 11 genes variable in three subjects - most notably, ATP-dependent protease clpX, 2-oxoglutarate dehydrogenase odhA, fmtC, and transcription-repair coupling factor mfd. Only one gene, staphylococcal protein A (spa), was found to have evidence of gene-wide diversifying selection. We identified three instances of intrahost IGR switching events, two of which flanked genes related to quorum sensing. The complex microbial ecology of the CF airway poses challenges for management. We illustrate appreciable intrahost diversity as well as persistence of a dominant lineage. We also show that intrahost adaptation is a continual process, despite purifying selective pressure, and provide targets that should be investigated further for their function in CF adaptation

    Draft Genome Sequence of Verrucosispora sp. Strain CWR15, Isolated from a Gulf of Mexico Sponge

    No full text
    Here, we present the draft genome sequence of Verrucosispora sp. strain CWR15, a bacterial symbiont of a Gulf of Mexico sponge. The genome consists of 35 contigs encoding 5,840 genes. The genome is the basis for future study and presents an underexplored taxonomy and biosynthetic potential

    Draft Genome Sequence of Verrucosispora sp. Strain CWR15, Isolated from a Gulf of Mexico Sponge

    No full text
    Here, we present the draft genome sequence of Verrucosispora sp. strain CWR15, a bacterial symbiont of a Gulf of Mexico sponge. The genome consists of 35 contigs encoding 5,840 genes. The genome is the basis for future study and presents an underexplored taxonomy and biosynthetic potential

    Early Emergence Phase of SARS-CoV-2 Delta Variant in Florida, US

    No full text
    SARS-CoV-2, the causative agent of COVID-19, emerged in late 2019. The highly contagious B.1.617.2 (Delta) variant of concern (VOC) was first identified in October 2020 in India and subsequently disseminated worldwide, later becoming the dominant lineage in the US. Understanding the local transmission dynamics of early SARS-CoV-2 introductions may inform actionable mitigation efforts during subsequent pandemic waves. Yet, despite considerable genomic analysis of SARS-CoV-2 in the US, several gaps remain. Here, we explore the early emergence of the Delta variant in Florida, US using phylogenetic analysis of representative Florida and globally sampled genomes. We find multiple independent introductions into Florida primarily from North America and Europe, with a minority originating from Asia. These introductions led to three distinct clades that demonstrated varying relative rates of transmission and possessed five distinct substitutions that were 3–21 times more prevalent in the Florida sample as compared to the global sample. Our results underscore the benefits of routine viral genomic surveillance to monitor epidemic spread and support the need for more comprehensive genomic epidemiology studies of emerging variants. In addition, we provide a model of epidemic spread of newly emerging VOCs that can inform future public health responses

    ddPCR Reveals SARS-CoV-2 Variants in Florida Wastewater

    Get PDF
    Wastewater was screened for the presence of functionally significant mutations in SARS-CoV-2 associated with emerging variants of concern (VOC) by ddPCR, and results accorded with sequencing of clinical samples from the same region. We propose that PCR-based screening of wastewater can provide a powerful tool for rapid and inexpensive screening of large population segments for VOC-associated mutations and can hone complementary sampling and sequencing of direct (human) test material to track emerging VOC

    Joining Forces against Antibiotic Resistance: The One Health Solution

    No full text
    Antibiotic resistance is a significant global health concern that affects both human and animal populations. The One Health approach acknowledges the interconnectedness of human health, animal health, and the environment. It emphasizes the importance of collaboration and coordination across these sectors to tackle complex health challenges such as antibiotic resistance. In the context of One Health, antibiotic resistance refers to the ability of bacteria to withstand the efficacy of antibiotics, rendering them less effective or completely ineffective in treating infections. The emergence and spread of antibiotic-resistant bacteria pose a threat to human and animal health, as well as to the effectiveness of medical treatments and veterinary interventions. In particular, One Health recognizes that antibiotic use in human medicine, animal agriculture, and the environment are interconnected factors contributing to the development and spread of antibiotic resistance. For example, the misuse and overuse of antibiotics in human healthcare, including inappropriate prescribing and patient non-compliance, can contribute to the selection and spread of resistant bacteria. Similarly, the use of antibiotics in livestock production for growth promotion and disease prevention can contribute to the development of antibiotic resistance in animals and subsequent transmission to humans through the food chain. Addressing antibiotic resistance requires a collaborative One Health approach that involves multiple participants, including healthcare professionals, veterinarians, researchers, and policymakers
    corecore