151 research outputs found

    Exploring the potential of Red Kidney Bean (Phaseolus vulgaris) to develop protein Based Product for food Applications.

    Get PDF
    ABSTRACT Protein isolate was prepared from red kidney beans and its functional properties were evaluated at different pH levels to access its suitability for food applications. Carbohydrates, crude protein, crude fiber, crude fat and ash contents of red kidney bean seeds were found to be 53.02±1.14%, 25.78±0.77%, 6.82±0.31%, 1.92±0.15% and 4.34±0.20%, respectively. Magnesium, calcium, sodium, potassium and iron were observed as macro elements in red kidney bean seeds. Protein solubility, emulsification, gelation as well as foaming properties of the bean protein isolate were significantly (P≤0.05) affected by different pH levels. The solubility, emulsifying activity and stability as well as foam capacity of the protein isolate were dependant with minimal values observed at pH 4 while maximum at pH 10. Contrarily, the stability of foam was highest at pH 4 while a decreasing trend in foam stability was observed with increase of pH. Gelation properties improved at acidic pH with maximum gelation capacity observed at pH 4 while these properties decreased at alkaline conditions. Conclusively, red kidney beans can be utilized to prepare protein isolate whose functional properties can be modified by changing the pH of the environment for better utilization in the food formulation systems

    Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone

    Get PDF
    We report on the comparative genomics and characterization of the virulence phenotypes of four &lt;i&gt;S. pneumoniae&lt;/i&gt; strains that belong to the multidrug resistant clone PMEN1 (Spain&lt;sup&gt;23F&lt;/sup&gt; ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant

    Substantial and sustained reduction in under-5 mortality, diarrhea, and pneumonia in Oshikhandass, Pakistan : Evidence from two longitudinal cohort studies 15 years apart

    Get PDF
    Funding Information: Study 1 was funded through the Applied Diarrheal Disease Research Program at Harvard Institute for International Development with a grant from USAID (Project 936–5952, Cooperative Agreement # DPE-5952-A-00-5073-00), and the Aga Khan Health Service, Northern Areas and Chitral, Pakistan. Study 2 was funded by the Pakistan US S&T Cooperative Agreement between the Pakistan Higher Education Commission (HEC) (No.4–421/PAK-US/HEC/2010/955, grant to the Karakoram International University) and US National Academies of Science (Grant Number PGA-P211012 from NAS to the Fogarty International Center). The funding bodies had no role in the design of the study, data collection, analysis, interpretation, or writing of the manuscript. Publisher Copyright: © 2020 The Author(s).Peer reviewedPublisher PD

    Socioeconomic Inequalities in Newborn Care During Facility and Home Deliveries: A Cross Sectional Analysis of Data from Demographic Surveillance Sites in Rural Bangladesh, India and Nepal

    Get PDF
    Background: In Bangladesh, India and Nepal, neonatal outcomes of poor infants are considerably worse than those of better-off infants. Understanding how these inequalities vary by country and place of delivery (home or facility) will allow targeting of interventions to those who need them most. We describe socio-economic inequalities in newborn care in rural areas of Bangladesh, Nepal and India for all deliveries and by place of delivery. Methods: We used data from surveillance sites in Bangladesh, India and from Makwanpur and Dhanusha districts in Nepal, covering periods from 2001 to 2011. We used literacy (ability to read a short text) as indicator of socioeconomic status. We developed a composite score of nine newborn care practices (score range 0–9 indicating infants received no newborn care to all nine newborn care practices). We modeled the effect of literacy and place of delivery on the newborn care score and on individual practices. Results: In all study sites (60,078 deliveries in total), use of facility delivery was higher among literate mothers. In all sites, inequalities in newborn care were observed: the difference in new born care between literate and illiterate ranged 0.35–0.80. The effect of literacy on the newborn care score reduced after adjusting for place of delivery (range score difference literate-illiterate: 0.21–0.43). Conclusion: Socioeconomic inequalities in facility care greatly contribute to inequalities in newborn care. Improving newborn care during home deliveries and improving access to facility care are a priority for addressing inequalities in newborn care and newborn mortality

    Comparative analysis and supragenome modeling of twelve Moraxella catarrhalis clinical isolates

    Get PDF
    Contains fulltext : 97744.pdf (publisher's version ) (Open Access)BACKGROUND: M. catarrhalis is a gram-negative, gamma-proteobacterium and an opportunistic human pathogen associated with otitis media (OM) and exacerbations of chronic obstructive pulmonary disease (COPD). With direct and indirect costs for treating these conditions annually exceeding $33 billion in the United States alone, and nearly ubiquitous resistance to beta-lactam antibiotics among M. catarrhalis clinical isolates, a greater understanding of this pathogen's genome and its variability among isolates is needed. RESULTS: The genomic sequences of ten geographically and phenotypically diverse clinical isolates of M. catarrhalis were determined and analyzed together with two publicly available genomes. These twelve genomes were subjected to detailed comparative and predictive analyses aimed at characterizing the supragenome and understanding the metabolic and pathogenic potential of this species. A total of 2383 gene clusters were identified, of which 1755 are core with the remaining 628 clusters unevenly distributed among the twelve isolates. These findings are consistent with the distributed genome hypothesis (DGH), which posits that the species genome possesses a far greater number of genes than any single isolate. Multiple and pair-wise whole genome alignments highlight limited chromosomal re-arrangement. CONCLUSIONS: M. catarrhalis gene content and chromosomal organization data, although supportive of the DGH, show modest overall genic diversity. These findings are in stark contrast with the reported heterogeneity of the species as a whole, as wells as to other bacterial pathogens mediating OM and COPD, providing important insight into M. catarrhalis pathogenesis that will aid in the development of novel therapeutic regimens

    Consensus Middle East and North Africa Registry on Inborn Errors of Immunity

    Get PDF
    Background: Inborn errors of immunity (IEIs) are a heterogeneous group of genetic defects of immunity, which cause high rates of morbidity and mortality mainly among children due to infectious and non-infectious complications. The IEI burden has been critically underestimated in countries from middle- and low-income regions and the majority of patients with IEI in these regions lack a molecular diagnosis. Methods: We analyzed the clinical, immunologic, and genetic data of IEI patients from 22 countries in the Middle East and North Africa (MENA) region. The data was collected from national registries and diverse databases such as the Asian Pacific Society for Immunodeficiencies (APSID) registry, African Society for Immunodeficiencies (ASID) registry, Jeffrey Modell Foundation (JMF) registry, J Project centers, and International Consortium on Immune Deficiency (ICID) centers. Results: We identified 17,120 patients with IEI, among which females represented 39.4%. Parental consanguinity was present in 60.5% of cases and 27.3% of the patients were from families with a confirmed previous family history of IEI. The median age of patients at the onset of disease was 36 months and the median delay in diagnosis was 41 months. The rate of registered IEI patients ranges between 0.02 and 7.58 per 100,000 population, and the lowest rates were in countries with the highest rates of disability-adjusted life years (DALY) and death rates for children. Predominantly antibody deficiencies were the most frequent IEI entities diagnosed in 41.2% of the cohort. Among 5871 patients genetically evaluated, the diagnostic yield was 83% with the majority (65.2%) having autosomal recessive defects. The mortality rate was the highest in patients with non-syndromic combined immunodeficiency (51.7%, median age: 3.5 years) and particularly in patients with mutations in specific genes associated with this phenotype (RFXANK, RAG1, and IL2RG). Conclusions: This comprehensive registry highlights the importance of a detailed investigation of IEI patients in the MENA region. The high yield of genetic diagnosis of IEI in this region has important implications for prevention, prognosis, treatment, and resource allocation

    Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer

    Get PDF
    Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions
    corecore