387 research outputs found

    Dynamic Control of Photoresponse in ZnO-Based Thin-Film Transistors in the Visible Spectrum

    Get PDF
    Cataloged from PDF version of article.We present ZnO-channel thin-film transistors with actively tunable photocurrent in the visible spectrum, although ZnO band edge is in the ultraviolet. ZnO channel is deposited by atomic layer deposition technique at a low temperature (80 C), which is known to introduce deep level traps within the forbidden band of ZnO. The gate bias dynamically modifies the occupancy probability of these trap states by controlling the depletion region in the ZnO channel. Unoccupied trap states enable the absorption of the photons with lower energies than the bandgap of ZnO. Photoresponse to visible light is controlled by the applied voltage bias at the gate terminal

    Plasmonically enhanced hot electron based photovoltaic device

    Get PDF
    Cataloged from PDF version of article.Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. (C) 2013 Optical Society of Americ

    PW03-014B - Gene-expression profiling study in FMF families

    Full text link

    Scattering evaluation of equivalent surface impedances of acoustic metamaterials in large FDTD volumes using RLC circuit modelling

    Get PDF
    Most simulations involving metamaterials often require complex physics to be solved through refined meshing grids. However, it can prove challenging to simulate the effect of local physical conditions created by said metamaterials into much wider computing sceneries due to the increased meshing load. We thus present in this work a framework for simulating complex structures with detailed geometries, such as metamaterials, into large Finite-Difference Time-Domain (FDTD) computing environments by reducing them to their equivalent surface impedance represented by a parallel-series RLC circuit. This reduction helps to simplify the physics involved as well as drastically reducing the meshing load of the model and the implicit calculation time. Here, an emphasis is made on scattering comparisons between an acoustic metamaterial and its equivalent surface impedance through analytical and numerical methods. Additionally, the problem of fitting RLC parameters to complex impedance data obtained from transfer matrix models is herein solved using a novel approach based on zero crossings of admittance phase derivatives. Despite the simplification process, the proposed framework achieves good overall results with respect to the original acoustic scatterer while ensuring relatively short simulation times over a vast range of frequencies

    Thin film MoS2 nanocrystal based ultraviolet photodetector

    Get PDF
    Cataloged from PDF version of article.We report on the development of UV range photodetector based on molybdenum disulfide nanocrystals (MoS2-NCs). The inorganic MoS2-NCs are produced by pulsed laser ablation technique in deionized water and the colloidal MoS2-NCs are characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and UV/VIS absorption measurements. The photoresponse studies indicate that the fabricated MoS2-NCs photodetector (MoS2-NCs PD) operates well within 300-400 nm UV range, with diminishing response at visible wavelengths, due to the MoS2-NCs absorption characteristics. The structural and the optical properties of laser generated MoS2-NCs suggest promising applications in the field of photonics and optoelectronics. (C) 2012 Optical Society of Americ

    Low temperature atomic layer deposited ZnO photo thin film transistors

    Get PDF
    Cataloged from PDF version of article.ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250°C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80°C; Ion/Ioff ratio is extracted as 7.8 × 109 and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80°C. ID-VGS characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias. © 2014 American Vacuum Society

    From infancy to adolescence: fifteen years of continuous treatment with hydroxyurea in sickle cell anemia

    Get PDF
    Despite documented laboratory and clinical benefits of hydroxyurea for children with sickle cell anemia (SCA), the drug\u27s long-term safety and efficacy remains poorly defined. The HUSOFT trial and extension study examined feasibility, toxicity, and hematological efficacy of hydroxyurea in infants with SCA.This report describes HUSOFT participants who have continued hydroxyurea therapy for 15 years. With IRB approval, medical records were reviewed for clinical, laboratory, and growth parameters.Twenty-eight infants enrolled in the original 2-year HUSOFT study received open-label liquid hydroxyurea at 20 mg/kg/day; 17 completed the extension study with dose escalation to 30 mg/kg/day. Eight of these 17 (6 girls and 2 boys, all HbSS) have continued on daily hydroxyurea for at least 15 years (median age at last follow-up 17.6 years) without interruption. All hematologic indices (Hb concentration, mean corpuscular volume (MCV), fetal hemoglobin) showed sustained effect after 15 years. The median maximum tolerated dose of hydroxyurea has decreased from 30 to 26 mg/kg/day (range 19.5-31.2); neutropenia [absolute neutrophil count (ANC) \u3c 1.0 x 10/L] prompting temporary drug discontinuation occurred a total of 10 times in 4 subjects and there was no severe neutropenia (ANC \u3c 0.5 x 10/L). Growth rates over 15 years continued at the 50th percentile for both height and weight, and puberty occurred without delay (age range 10-14 years). There were 5.1 vaso-occlusive events (pain and acute chest syndrome)/100 patient years, 7.3 packed red blood cell transfusions/100 patient years. No malignancies, strokes, or deaths occurred. At last follow up, all subjects were at appropriate grade level (10-12 grade) with no history of repeated grades.A cohort of young teenagers with SCA who initiated treatment in infancy have had sustained and continued hematological benefits for a decade and a half. Growth and sexual development are normal and comparable to the general pediatric population. Continuous hydroxyurea therapy since infancy appears safe and efficacious in SCA
    corecore