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Abstract: Most simulations involving metamaterials often require complex physics to be solved
through refined meshing grids. However, it can prove challenging to simulate the effect of local
physical conditions created by said metamaterials into much wider computing sceneries due to the
increased meshing load. We thus present in this work a framework for simulating complex structures
with detailed geometries, such as metamaterials, into large Finite-Difference Time-Domain (FDTD)
computing environments by reducing them to their equivalent surface impedance represented by a
parallel-series RLC circuit. This reduction helps to simplify the physics involved as well as drastically
reducing the meshing load of the model and the implicit calculation time. Here, an emphasis is made
on scattering comparisons between an acoustic metamaterial and its equivalent surface impedance
through analytical and numerical methods. Additionally, the problem of fitting RLC parameters
to complex impedance data obtained from transfer matrix models is herein solved using a novel
approach based on zero crossings of admittance phase derivatives. Despite the simplification process,
the proposed framework achieves good overall results with respect to the original acoustic scatterer
while ensuring relatively short simulation times over a vast range of frequencies.

Keywords: metamaterials; metadiffusers; scattering; finite-difference time-domain (FDTD)

1. Introduction

Over recent decades, there has been a lot of progress regarding numerical simulation
techniques in the field of wave physics, mostly benefiting from modern hardware and
software improvements. However, computing limits can still be reached in most frequency-
or time-domain numerical problems. Both approaches come with their own strategies
for approximating wave equations within a bounded space. Usually, the accuracy and
computational time of such schemes are dependent on the minimal size of the meshing
grid, on the hardware at hand, the frequency to be studied, and on the overall size of the
numerical environment. To a relative degree, numerical schemes tend to be computationally
cheaper for modelling either complex geometries in small spaces or simpler geometries
within larger spaces. The suitability of one method over the other generally depends on
the scope of the study.

There are cases, however, where simulations of complex geometries in larger scener-
ies are of specific interest, i.e., sceneries where intricate geometry with fine meshing is
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required at a local scale, but the physical effect of such geometry must be studied within a
much more global environment. An example of such a study can be found in simulations
involving metamaterials, which are usually quite compact, where their influence over a
larger three-dimensional context may be of interest. Metamaterials are composite struc-
tures engineered in such a way that they can display extraordinary physical properties
within deep-subwavelength dimensions, i.e., dimensions much smaller than the design
wavelength. As such, metamaterials come in a variety of shapes for many wave-control
applications, going from frequency-selective structures for cloaking [1] or trapping [2] to
reconfigurable radiation patterns for imaging [3] and telecommunications [4], with scales
ranging from optical [5] to seismic [6] wavelengths, passing through microwave [7], ultra-
sound [8] and audio frequencies [9]. In the case where the volume of the simulated scenery
happens to be very large compared to the metamaterial meshing dimensions, traditional
modelling strategies could prove non-viable within realistic means, likely resulting in
immense computational times and memory requirements. This calls for alternative strate-
gies in modelling local wave interactions at boundaries and their respective propagation
behaviour in much larger spaces within more reasonable computational means.

This problematic has sprung a rising number of research initiatives for many decades.
The concept of impedance [10] has helped in establishing a strategy for approximating the
physical conditions created by the geometry of an object by a set of impedance boundary
conditions (IBC) [11]. Many of such investigations began to appear in numerical applica-
tions linked to electro-magnetic [12,13], heating [14], and acoustic [15] problems to reduce
the computational load, particularly so in the early years of scientific computer simula-
tions. Lately, this strategy has seen multiple uses for simplifying intricate subwavelength
structures, such as metamaterials [16–19]. On top of analytical impedance approxima-
tions, the Resistor-Inductor-Capacitor (RLC) circuit impedance analogy between electrical
and mechanical systems [10] has also allowed for simpler expressions of resonant struc-
tures. This becomes notably useful for the description of metamaterials made of locally
resonant elements [20]. In the context of large-scale acoustic computation, time-domain
methods offer the advantage to simulate a vast range of frequencies for large spaces in
a single computation run [21]. Many of the works in this field emphasise the use of
frequency-dependent boundary conditions to describe the acoustic characteristics of the
interfaces present in the model [22–29]. However, to the authors knowledge, no work has
yet been conducted for applying metamaterial-based impedance boundary conditions into
large-scale time-domain acoustic computational methods.

In this work, we propose an acoustic scattering study where compact metamaterial-
inspired acoustic diffusers, called metadiffusers [30–32], are considered too complex to
simulate directly in a 3D Finite-Difference Time-Domain (FDTD) scheme, and thus decide
to evaluate the computational and scattering impact of RLC IBCs on the diffuse field
of a larger space in which they could be installed, such as an orchestra pit. Figure 1
illustrates this approach, where the scaled scheme of a N = 5 slits Quadratic Residue
Metadiffuser (QRM) used here as a reference compact metamaterial is shown in Figure 1a.
The local scattering generated by the metadiffuser can be alternatively reproduced through
a simplification of the metamaterial geometry into a set of IBCs. The resulting IBCs can
thereafter be reproduced through an RLC circuit [28] integrated at the desired boundaries
of the 3D FDTD volume, as illustrated in Figure 1b,c. The novelty of this approach lies
in the optimised fitting of the RLC circuit IBCs based on zero crossings of admittance
phase derivatives in order to ultimately replicate the scattering generated by metamaterial
structures in large FDTD volumes. A time-domain scheme has been chosen for this work as
not only it can wield broadband frequency information, but also enables time-domain signal
processing which can later be used for further virtual audio operations for auralisation and
spatialisation purposes.
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Figure 1. Conceptual diagram illustrating (a) a render of a Quadratic Residue Metadiffuser (QRM) with N = 5 slits,
(b) a numerical equivalent surface impedance (ZEQ) of the metadiffuser identically composed of N = 5 slits, and (c) an
implementation of the ZEQ into a large computational volume, e.g., an orchestra pit.

2. Theoretical Modelling

Acoustic scattering occurs when a travelling sound wave encounters an obstacle or
inhomogeneity in its path, e.g., a solid object or a change of medium density, and thus
breaks into secondary spreads out from it in a variety of directions. The magnitudes
and directions of such scattered waves can be described by the Helmholtz–Kirchhoff
theory of diffraction, which uses Green’s theorem to determine the scattered pressure
at any given point by specifying the wave field onto the scattering obstacle. However,
the latter formulation is generally approximated depending of contextual assumptions
regarding the distance of the source and observer from the scattering object compared to
the monochromatic wavelength. This leads to two major situations, i.e., (i) the near-field
where the source and observer are relatively close to the obstacle, under the Rayleigh
critical distance (R0 = S/λ, where S is the area of the surface and λ the wavelength of the
wave), and (ii) the far-field where the source and observer are considered to be far away
from the obstacle, in the limit of infinity.

On a first instance, we will focus on the frequency-dependent scattering made by the
metasurface, where the acoustic field at a point r = r(x, y, z) scattered by a surface centred
at r0 = r(x, y, z = 0) can be approximated by the Rayleigh-Sommerfeld integral as

Ps(r) = −i
k

2π

∫
S0

p0(r0)R(r0)eik|r−r0|

| r− r0 |
dS, (1)

where p0(r0) is the incident pressure field, and R(r0) is the spatially dependent reflection
coefficient of the locally reacting surface S0, with k = ω/c0 being the wavenumber in
air at the angular frequency ω and speed of sound c0. Here, the Fourier transform of
f (x) is f̂ (k), which is given by f̂ (k) =

∫
f (x)e−ikxdx. It transpires from Equation (1) that

defining the state of the spatially dependent reflection coefficient, R(r0), is ultimately
important to determine the directions and magnitudes of the scattered sound energy. In the
case of metadiffusers, the spatially dependent surface reflection coefficient is obtained
through the Transfer Matrix Method [30] (TMM), which relates the acoustic pressures
and normal particle velocities at the extremities of a one-dimensional acoustic system;
here, a slit loaded with Helmholtz resonators (HRs). The surface reflection coefficient and
characteristic impedance of the n-th slit, Rn

slit and Zn
slit, respectively, can be interchangeably

deduced one from the other by the relation

Zn
slit = Z0

1 + Rn
slit

1− Rn
slit

, (2)

where Z0 = ρ0c0 is the characteristic impedance of air.
The diffusion coefficient of a surface rates the uniformity of the aforementioned

scattered sound field. Moving to a spherical coordinate system where Ps(r) = Ps(θ, φ, r)
with θ and φ being the elevational and azimuthal planes respectively and r being the
distance to the origin, the directional diffusion coefficient [33], δψ, produced when a sound
diffuser is radiated by a plane wave at the incident angle ψ = (θ′, φ′) (primed superscripts
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denoting incident angles), can be estimated from the hemispherical autocorrelation of the
scattered distribution

δψ =

[∫∫
Is(θ, φ)dS

]2
−
∫∫

I2
s (θ, φ)dS∫∫

I2
s (θ, φ)dS

, (3)

where Is(θ, φ) ∝ |ps(θ, φ)|2 is proportional to the scattered intensity. The integration
is performed over a hemispherical surface (−π/2 ≤ θ ≤ π/2 and 0 < φ < 2π) where
dS = dθdφ. This coefficient must be normalised to that of a plane reflector, δ f lat, to eliminate
the diffracting effect caused by the finite size of the structure, i.e.,
δn,ψ = (δψ − δ f lat)/(1− δ f lat). In this works we analyse the 3D case of a normal inci-
dent wave, i.e., (θ′, φ′) = (0, 0) and δn,ψ ≡ δn,0.

3. RLC Circuit Impedance Boundary Formulation

The magnitude and phase of the surface impedance of a metadiffuser are marked
by the inherent resonances of the structure, i.e., if it has one or more resonators it should
show one or more fundamental resonant peaks or phase shifts in its surface impedance.
In the case of the QRM, a highly resonant structure with two HRs per slit is displayed,
which lends itself to a boundary formulation based on a combination of second-order
resonators. Example admittances for two slits of the QRM are shown in Figure 2. The
two slits displayed in Figure 2 are both loaded with two HRs but with different slit and
HR dimensions. This results in different surface impedances for each slit, thus presenting
different resonance peak amplitudes and phase shifts.
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Figure 2. Normalised magnitude and phase of two example surface admittances (left and right) of two different slits within
a QRM as a function of frequency in Hz, with identified resonances marked in grey dots. Y0 = 1/ρ0c0 represents the
admittance of air.
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One useful passive formulation for a given slit impedance consists of a parallel set of
series RLC circuits (after [28]), each consisting of one resistor (R), one inductor (L) and one
capacitor (C), where all RLC parameters are non-negative and real-valued. The admittance
of this structure in the Laplace domain is given by

Y(s) =
B

∑
b=1

1
Z(b)

, Z(b) = L(b)s + R(b) + 1/(sC(b)), (4)

where L(b), R(b), and C(b) are non-negative constants for each branch. For our analyses
and optimisations, we can limit s to s = jω, and where B ≥ 1 is the number of RLC
branches. The associated impedance of the RLC circuit is then simply Z(jω) = 1/Y(jω).
With this impedance boundary formulation we aim to fit the surface impedance of each slit
of the QRM with an equivalent circuit made up of a set of resonances with non-negative
RLC parameters. The passivity of this structure is then preserved in the discrete FDTD
setting through the choice of the bilinear transform as a discretisation method [34]. This
impedance model can be seen as an extension of various simpler frequency-dependent
boundary models presented in the context of FDTD methods for room acoustics [35–37].

A methodology for fitting RLC parameters is described in [28], which consists of:
(i) identifying resonances in an admittance by their peaks in the admittance magnitude,
and (ii) estimating half-power bandwidths for each resonance from admittance magnitude.
From those estimates RLC parameters may be identified for each resonance. This is
followed by a global optimisation over the RLC triplet parameters using a Nelder–Mead
optimisation. That approach works well when admittance peaks are well-separated, but in
general peaks in admittance magnitude data can be difficult to identify, and furthermore
half-power bandwidths can be hard to estimate from admittance magnitude data alone.
This is especially true in the example admittances shown in Figure 2. Other ways for
approximating the weight and resonant frequencies in viscoacoustic problems were also
previously reported [38].

In this study, we use an approach which is based on making use of admittance phase
information, and derivatives thereof, to identify resonance parameters. It can be observed
from Figure 2 that peaks in admittance magnitude are linked to inversions in the phase
response. More specifically, we know that the phase response of an individual-series RLC
circuit admittance goes to zero at its resonant frequency and displays a negative slope at
that frequency. Additionally, regarding the slope of the phase at the resonant frequency,
one can derive from Equation (4)

− ∂∠Y(iω)

∂ω

∣∣∣∣
ω=ω0

=
2

∆ω
=

2L
R

, (5)

where ω0 = 1/
√

LC. Thus, after detecting a resonance in the admittance phase from its
slope and zero crossings, and after sampling the associated peak in the admittance magni-
tude, the half-power bandwidth, ∆ω, follows from Equation (5) (which may be estimated
with simple finite differences). This approach is sufficient to obtain RLC parameters for
each well-isolated resonance, and can be more robust than peak detection and half-power
bandwidth estimation from the admittance magnitude alone. Nevertheless, this approach
still has limitations for very-closely spaced resonances (examples can be seen in Figure 2)
where the phase response at a resonance may not cross zero (and thus would not be de-
tected with this approach so far). To deal with such issues, the second derivative of the phase
is additionally used to identify resonances, which can be written as:

∂2∠Y(iω)

∂ω2

∣∣∣∣
ω=ω′0

= 0 , ω′0 = ω0

√√
4− (∆ω/ω0)2 − 1, (6)
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where ω′0 is the angular frequency at which there is a zero crossing in the second-order
derivative of the admittance phase. Furthermore, ω′0 ≈ ω0 provided that (∆ω/ω0)

2 � 1,
which means that ω′0 may be used as an initial estimate of ω0 to seed the subsequent global
optimisation. Identified resonances using this phase-derivative zero-crossing method (grey
dotted lines) can be seen in Figure 2.

Once a set of RLC triplet parameters has been identified given a set of resonant frequen-
cies and associated bandwidths, a global optimisation using a Nelder–Mead method [39]
as a non-linear minimisation algorithm is carried out to find the L(b), R(b) and C(b) that
minimise ε = ‖YTMM−YRLC‖, where for a given slit, YTMM is the target admittance output
from the TMM model of the QRM, and YRLC is the impedance output of the RLC circuit.
Fit reflection coefficients of the two QRM slits previously illustrated (see Figure 2) can
be seen in Figure 3. It can be observed that this methodology is successful in capturing
the resonances within the QRM slits. The errors shown take into account magnitude
and phase, and discrepancies can be seen at the upper limit of our range of frequencies
(e.g., a resonance being ignored). Such discrepancies may be attributed to viscothermal
losses in the TMM model which cause deviations from ideal second-order resonances.
These could be mitigated using pairs of RLC triplets for each identified resonance to allow
for better optimised results, but this was not pursued as a compromise of accuracy and
model complexity.
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Figure 3. Magnitude and phase of the reflection coefficient using the Transfer Matrix Method (blue, solid) and using the
RLC approximation (orange, dashed) relating two different slit admittances within the QRM along with fitting errors (green,
dotted), as a function of frequency in Hz.

For later comparison purposes, a similar approach for modelling the equivalent surface
impedance of the QRM is adopted in a Finite Element Method (FEM) study in COMSOL
Multiphysics 5.3™, where the N = 5 impedance patches were modelled using built-in
impedance boundary conditions with the complex impedance data obtained from the
TMM model as input. The resulting scattering data between the QRM and the equivalent
surface made of different RLC circuits is shown in the next section.

4. Spatial Acoustic Scattering

Figure 4 compares the 3D hemispherical scattered sound pressures of the aforemen-
tioned QRM with N = 5 slits and the equivalent RLC surface impedance, ZEQ, with N = 5
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slits as well. The scattering distributions have been obtained through different methods,
i.e., (i) the Rayleigh-Sommerfeld (R-S) integral for near-field scattering information, (ii)
Finite Element Method (FEM) in COMSOL Multiphysics 5.3™, and (iii) Finite-Difference
Time-Domain (FDTD) simulations. Numerical simulations in COMSOL were computed by
installing the surface at the centre of a spherical domain filled with air, surrounded by a
concentric perfectly matched layer (PML) with a far-field boundary condition at the bound-
ary of the air domain to satisfy Sommerfeld’s radiation condition. A similar setup was
used in the FDTD domain, but with first-order Engquist–Majda [40] absorbing boundary
conditions at the boundary of a cubic air domain large enough to ignore any erroneous
reflections in the obtained responses. The FDTD simulation was calibrated to have less
than 1% numerical dispersion error up to 8 kHz with 10.5 points per wavelength (PPW)
using the usual Courant-Friedrichs-Lewy (CFL) condition for the simplest 3D Cartesian
scheme (CFL = 1/

√
3), for which stability is ensured [21,41]. The time step, Ts, considered

in the simulations can be deduced from the CFL condition as Ts = Xs × CFL/c, where Xs
is the spatial sampling and c = 343 m/s is the speed of sound in air. Figure 4 shows the
theoretical and numerical solutions of the surface scattered sound energy integrated over a
radius distance of 1 m, so that all datasets represent a finite framework. In the FDTD model,
virtual microphones were positioned at 1 m around the surface, which considering its edge
dimensions (x, y) [35 cm, 35 cm], should be sufficient to correctly depict the scattered field
at a frequency f = 2 kHz. FEM results were obtained following a similar approach where
the integration was performed over a spherical near-to-far-field boundary condition of
1 m radius.

Figure 4. Distribution of sound scattered pressure levels at 2 kHz for a Quadratic Residue Metadiffuser (QRM) and
the equivalent surface impedance RLC circuit (ZEQ) according to (a) Rayleigh-Sommerfeld (R-S) integral, (b,d) Finite
Element Method (FEM), and (c,e) Finite-Difference Time-Domain (FDTD). δ insets represent the diffusion coefficient of the
scattered distributions.

Overall, the polar plots displayed in Figure 4a,b show some variations between the
theory and FEM simulations, with normalised diffusion coefficient values varying from
δn,0 = 0.61 to δn,0 = 0.55. These can be explained through the divergence of theoretical
assumptions with respect to a numerical solving of the wave equation. More specifically,
in a theoretical framework, the surface impedance is considered locally homogeneous
for each slit, a fact that may not be entirely true in numerical terms due to the potential
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evanescent coupling between slits, a phenomenon not taken into account in the theory.
As the scattered sound field is highly dependent on the distribution of the surface’s
reflection coefficient, slight variations in the polar distributions can thus be expected.
Nonetheless, it can be seen that the global shapes of the QRM sound scattering distributions
are sensibly similar one to another, which can be confirmed by their close autocorrelation
values. In addition, Figure 4b represents quite well the expected main dip that defines the
Quadratic Residue sequence at θ ≈ −20◦ in the φ = [−90◦ : 90◦] elevation axis. The main
axial and lateral energy lobes are also quite well represented. However, a slightly higher
energy lobe can be discerned at θ = 20◦ in the FEM case. This is likely due to the finite
size of the surface sample in the simulation, resulting in a decrease of the scattered sound
energy at grazing angles, thus further relatively enhancing the remaining scattered energy
and slightly reducing the intrinsic autocorrelation value. Despite such differences, the FEM
model can be estimated to be in good agreement with the theoretical prediction.

The missing scattering distribution under Figure 4c is at the core of this work’s
rationale, as it would be an unnecessarily complex task to simulate the fine features of
the metadiffuser in a large 3D volume. The complex physics and the small geometry
of the QRM not only would require an extremely fine meshing grid, and thus a very
high computational load for conducting the same simulations, but viscothermal losses
would have to be taken into account as well. This is why the aforementioned equivalent
surface impedance as a fitted RLC circuit within an FDTD model is proposed to bypass the
numerical limitations of large-scale multiphysics simulations, while faithfully reproducing
the intended scattering of the metadiffuser embedded in a larger scene. It is worth noting
that viscothermal losses inside the metasurface are implicitly encoded by the RLC approach
in the FDTD scheme. However, in order to strengthen the forthcoming analysis between
FEM and FDTD, scattering comparisons of a flat surface and a much simpler acoustic
diffuser (e.g., a Quadratic Residue Diffuser) can be found in the Supplementary Materials,
where excellent agreement between the different numerical methods can be observed.

Figure 4d shows the scattering distribution of the equivalent surface impedance simu-
lated through FEM where the N = 5 impedance patches were modelled using impedance
boundary conditions with input values identical to the analytical (TMM) surface impedance
of the QRM. Again, it can be observed that the main dip at θ ≈ −20◦ is correctly repro-
duced, and that the main axial lobes are also in good agreement with the theory, leading to
a normalised diffusion coefficient δn,0 = 0.56 close to that of Figure 4b. The major changes
that can be distinguished compared to the FEM simulation of the QRM are the energy
distribution of the lateral lobes and the smoothing of the θ ≈ 20◦ energy lobe. The former
seems to resemble that of a flat panel scattering. Perhaps this is due to the disappearance
of the slit cavities within each impedance patch which may cause variations from the
estimated slit impedance values as these are dependent on the free air radiation correction
of the slits. More investigation on that matter is needed.

Figure 4e similarly represents the scattered sound distribution of the ZEQ in the FDTD
solver. Results are in excellent agreement with the ZEQ FEM data, with a very similar
normalised diffusion coefficient δn,0 = 0.57. A minor increase in scattered sound energy
can however be perceived between FEM and FDTD ZEQ models which also appears in
other cross-numerical comparisons that were conducted for traditional sound diffusers
and flat surfaces (see Supplementary Material). This slight energy increase in FDTD RLC
modelling may then be attributed to energy propagation modelling in each numerical
environment (FEM/FDTD), but remains nonetheless almost negligible with a difference in
diffusion coefficient of 1%.

Although the equivalent surface impedance method proposed here results in a major
simplification of the more intricate geometry of the metamaterial being studied, it can be
seen that it is quite efficient for replicating an approximation of its scattered field into the
surrounding space. Additionally, it has been previously shown that these FDTD simulations
with such RLC circuit boundary conditions are amenable to parallel acceleration [29].
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5. Temporal Acoustic Scattering

In addition to the previous spatial scattering results, a temporal acoustic scattering
comparison is also here presented for evaluating the presence of time dispersion within the
above-collected FDTD data. Figure 5 thus shows several wavelet transforms of scattered
impulse responses corresponding to a flat panel, a traditional sound diffuser and the ZEQ.
A fully modelled N = 5 Quadratic Residue Diffuser (QRD) of dimensions [x, y, z](35, 35,
28) cm and design frequency f0 = 500 Hz is here presented instead of a QRM due to the
difficulty in modelling the latter structure in the FDTD solver. One must note that the QRM
and QRD possess different scattering characteristics over the frequency range considered,
only matching around 2 kHz.

(a) (b) (c)

Flat reflector (FDTD) Diffuser (QRD, FDTD) Metadiffuser (ZEQ, FDTD)

x10-3 x10-4 x10-4

Figure 5. Wavelet transforms of scattered impulse responses corresponding to (a) a flat panel via 3D FDTD, (b) the QRD
via 3D PSTD, and (c) the ZEQ via 3D FDTD. Insets represent the reconstructed inverse wavelet transform of the original
impulse responses.

Figure 5a shows the time-frequency information of the scattered impulse response
captured at the top of a flat surface, at z = 1 m. As expected, only a single hard reflection is
obtained in the impulse response, covering the entirety of the frequency range of interest.
A secondary reflection with much less intensity can also be identified, generated from the
edge diffraction of the panel coming back to the receiver a couple of milliseconds after
the first major reflection. This is supported by the inset displaying the time series of the
reconstructed signal by inverse wavelet transform. Additionally, a late reflection with
small amplitude can be observed at the end of the time window which may be due to
spurious reflections not entirely absorbed by the surrounding Engquist–Majda absorbing
boundary conditions.

The scattering obtained with the QRD via FDTD is illustrated in Figure 5b, where a
strong temporal dispersion can be distinguished by the spreading of the scattered waves
through time. In such figure, one can see a major reflection shortly followed by a similarly
strong one, after which a series of multiple reflections appear with varying frequency
content and continuously less energy. This provides with a good illustration of the scatter-
ing generated by the frequency-dependent behaviour of a sound diffuser. The blue dots
represent the absence of frequency content in very narrow time periods. These are caused
by wave interference due to the wavelength delay generated by the phase-grating diffuser,
providing with a time-frequency dispersion pattern.

Ultimately, Figure 5c displays the scattered impulse response of the ZEQ obtained
through RLC circuit filtering. It can be observed that a strong temporal dispersion is also
obtained, with a similar pattern than the QRD. Even if the surface of the ZEQ is flat, it
reproduces a similar frequency-dependent behaviour than a QRD—although, as mentioned
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previously, both temporal dispersions cannot be strictly compared one to the other. How-
ever, the scattering from the QRD serves as a good reference to observe the added temporal
dispersion of the ZEQ.

6. Metadiffuser Equivalent Surface Impedance in a Large Space

For this work, an orchestra pit is chosen for a large scene in which to embed the
proposed equivalent surface impedances in a 3D FDTD simulation. The geometry of the or-
chestra pit of general dimensions [x, y, z](8, 20, 2.5) is idealised as shown in Figure 6a, where
a sound source S located at [x, y, z](2, 10, 1.5) and a receiver R located at [x, y, z](6, 10, 1.5)
are highlighted. Note here that the pit is virtually isolated from the exterior environment
of what would be the rest of an opera house. The considered orchestra pit is simulated
following two different scattering strategies implemented on the walls. In the first situation,
no particular scattering on the boundaries is considered, i.e., the walls are simply assumed
perfectly rigid.

z
x

l = 0.0384
e = 0.0169

e/ l  = 0.44

l = 0.0575
e = 0.0058

e/ l  = 0.10

(c)

y
x

SR SR
S
R

(d) (e)

(f) (g) (h)

Figure 6. (a) Geometry of an ideal orchestra pit used in a 3D FDTD simulation. (b) Sample impulse response with different
integration times used for the Spatial Decomposition Method (SDM). Spatio-temporal distributions of sound field energy
(10 log10 |ps|) for each coordinate plane in the orchestra pit received at location R from sound source S in (c–e) a pit with flat
boundaries, and (f–h) a pit with sparsely distributed repetitions of equivalent surface impedance (ZEQ) patches.

The FDTD simulation grid resolution was set to 10.5 PPW at 8 kHz, resulting in
4.8 billion computational elements, in order to obtain a numerical dispersion errors less
than 1% [41] below such frequency. The simulations involving flat panels (no scatterers)
required 30 GB of memory computed in parallel using Nvidia CUDA spread over four
Nvidia Titan X GPU cards (Maxwell architecture). Simulations times with flat panels were
approximately 55 min for 0.5 s of simulated response. Including the more complex RLC
boundary conditions, the FDTD simulation took 65 min and required 3% more memory
running on the same GPUs. Thus, the equivalent surface impedance incurs some extra
minimal simulation costs (as expected from [29]), and it is also much smaller relative to the
simulation costs expected for a full-fledged multiphysics simulation (taking into account
QRM details and physics) in this space up to the chosen frequency resolution.

The impulse responses captured within this environment are analysed by means
of a Spatial Decomposition Method (SDM) [42], which allows the determination of the
directions of arrival (DOA) [43,44] of sound events in a 3D set of spatial impulse responses.
The latter are captured through a microphone array and can be windowed over different
integration times to show the evolution of the spatial sound field with respect to time. In this
case, a 3× 3× 3 virtual microphone array was used for recording the numerical impulse
responses at the receiver location, and is displayed in Figure 6b. For data processing,
the SDM Toolbox [45] made available by the Virtual Acoustics Team at Aalto University,
Finland, was used. The impulse responses cover a frequency range ∆ f = [20:8000] Hz
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and are integrated over several incrementing time windows so that the cumulative energy
of the impulse responses can be observed through time. These span from [0–20] ms to
[0–2000] ms to cover most of the recorded information, as shown in Figure 6b. Ultimately,
the spatial sound field for each time window can be plotted along the 3 orthonormal polar
planes, i.e., lateral, transversal and median planes.

Figure 6c displays the spatio-temporal response at R in the transverse plane (xy-plane).
It can be observed that early acoustic energy coming in the first 20 ms (red area) comes
mostly from the front, where the sound source is located, with a significant contribution
from the back as well due to the wall reflection. Later reflections integrated up to 2 s of
the impulse responses (orange to blue areas) show an increase of sound energy for many
directions of arrival due to a more chaotic state of sound reflections within the environment
at those time steps, resulting in a relatively uniform angular late sound field distribution.
Still, in most directions, the energy of the late sound field remains 12 dB or more below the
initial energy recorded directly in the front and in the back of the receiver. For both early
and late spatio-temporal curves, a spatial autocorrelation coefficient for each time window
can be estimated in a similar way to the diffusion coefficient in Equation (3). In such manner,
the closer the coefficient is to unity, the more uniform the spatial distribution. The ratio
of the early to the late spatial autocorrelation coefficients can provide an early-to-late
diffuseness coefficient [46],

De/l = (1− δe/δl), (7)

where δe and δl are the early and late spatial autocorrelation coefficients, respectively. This
formulation describes the rate of sound field isotropy between early and late integration
times. In such case, De/l → 0 implies that the evolution of the early-to-late diffuseness
is non-existent, i.e., that both sound fields are identical, whereas De/l → 1 indicates a
maximum increase of isotropy between early and late diffuse sound fields, with the early
sound field approximating that of a plane wave in free-field conditions and the late sound
field approximating a spherical distribution.

In the absence of any sound diffuser, in the early [0–20] ms window, this results in an
early autocorrelation coefficient δe = 0.0056, while for the late time window of [0–2] s a
value δl = 0.0223 can be seen. This shows that the early sound field is less uniform than
the overall late sound field, which is to be expected in an environment where specular
reflections of sound are dominant. In Figure 6c, an early-to-late diffuseness coefficient
De/l = 0.75 is shown, illustrating a great increase in isotropy between the early and late
diffuse sound fields. Similar observations can be made for the median (xz) and lateral (yz)
planes in Figure 6d,e, respectively. In the median plane, an early-to-late diffuseness ratio
De/l = 0.56 is achieved, showing less difference between early and late spatial distributions.
This is supported by the open-air nature of the orchestra pit, where little extra reflection
directions are enabled. In Figure 6e, a lower early-to-late diffuseness De/l = 0.90 can be
identified for the lateral plane, bringing similar features than those encountered in the
transverse plane, i.e., very narrow early spatial distribution significantly widening up in
late integration times.

In the second pit configuration, an alternative scenario is proposed with clusters of
6× 3 repeated RLC fitted metadiffusers sparsely distributed along the walls. The intention
behind this strategy is to distribute more sound energy in the early reflection regime of
the pit, which incidentally may also help enhance the acoustic conditions required for
musicians to experience a more suitable acoustical comfort while performing in such
environment. The use of equivalent surface impedance is again motivated by the limiting
constraints of modelling compact and detailed geometrical structures in a large 3D FDTD
numerical scenery.

The above incentive is illustrated in Figure 6d–f which show the spatio-temporal
plots obtained in the second pit configuration for the transverse, median, and lateral
planes, respectively. In the transverse plane in Figure 6d, the early time integration area
(red) demonstrates the arrival of strong reflections coming from broader directions than
in the previous configuration with just rigid walls. This is supported by an increased
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autocorrelation coefficient δe = 0.0078, which leads to confirm the presence of sound
diffusers at the boundaries of the pit. A second major change in early sound distribution can
also be seen for the [0–50] ms time window, displaying a much broader and homogeneous
incoming sound field due to the presence of multiple 2nd and higher order reflections
being more sparsely distributed within the pit thanks to the presence of the metadiffusers.
Additionally, the late time integration area (blue) shows a very similar shape than in the
previous scenario, with a value δl = 0.0224. This implies that the late sound field obtained
in both situations tends to a diffuse state of reflections with stochastic directions of arrival
quite independently of any local scattering on the boundaries, which is here shown to only
affects early sound distribution in a significant manner. The difference in early and late
sound fields in Figure 6d translates in a relative decrease of the early-to-late diffuseness
coefficient compared to that of Figure 6a, with De/l = 0.65. Likewise, a general increase of
early-to-late diffuseness can be observed in Figure 6e,f, with De/l = 0.49 and De/l = 0.84
in the median and lateral planes, respectively. It is worth mentioning that the sound field
in Figure 6d shows a similar sound field pattern compared to the one in Figure 6g, which is
again due to the opening of the pit limiting the potential directions of arrival for reflections
in this particular section. A small improvement to the early sound field distribution can
however be seen between 0◦ and −45◦.

In addition to the early-to-late diffuseness, the more general diffuseness coefficient [46]
De|ZEQ = (1− δZEQ/δ0), can also be determined between the early sound fields in both
pit configurations, where the spatial autocorrelations obtained with homogeneous flat
boundaries are here considered to be the most non-diffuse case of reference, δ0. In this
manner, a relative diffuseness, De|ZEQ, can be given for the different early sound fields
in each cross-section to provide with a more suitable measure of the impact of sound
scattering in the environment. In this sense, De|ZEQ → 0 means that both early sound
fields (in the homogeneous and ZEQ cases) have identical spatial distributions, while
De|ZEQ → 1 indicates a transition to a maximal isotropic distribution of the early sound
field generated in the ZEQ environment.

In Figure 6d, the latter results in a relative diffuseness coefficientDe|ZEQ = 0.39, mean-
ing that the presence of ZEQ panels helps increase the isotropy of the spatial distribution
at the receiver by a factor of 39% compared to that of the pit with homogeneous rigid
boundaries. Similarly, relative diffuseness coefficients De|ZEQ = 0.22 and De|ZEQ = 0.63
can be observed in Figure 6e,f, respectively. These values corroborate the analysis made so
far in that the median plane in Figure 6e shows only a slight increase in early diffuseness
between the two configurations, whereas a major increase between early sound fields is
displayed in the lateral plane in Figure 6f.

7. Conclusions

In this work, we have demonstrated the transposition of an acoustic metamaterial (a
metadiffuser) with intricate geometry into a simpler set of RLC circuit impedance boundary
conditions to compute the local physical conditions generated by the metamaterial into a
larger FDTD numerical environment. It has been shown that using a novel phase-derivative
zero-crossing fitting methodology, the impedances at the surface of the metamaterial and
those of the fitted RLC circuit equivalent surface impedance are in excellent agreement.
In addition, a good agreement between analytical and numerical scattering, in space
and time, generated by the RLC circuit boundary conditions has been shown despite
the drastic geometry reduction of the original metamaterial. Ultimately, an ideal case
study helped underline the impact of the local scattering generated by the impedance
boundary conditions into a practical situation, where the direct implementation of multiple
metamaterials would have been forbiddingly taxing. Simulations showed moderately
slower computational times than when including RLC circuit boundary conditions as
compared to rigid flat panels. The results shown in this work demonstrate the advantages
of simplifying complex metamaterial structures for solving wave problems in global
situations, without incurring significant extra computational resources and time. This
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can be of great value in seismic, oceanic, or atmospheric wave propagation models which
require extremely large volumes to compute, as well as in critical environments where the
metamaterial coverage becomes significant, such as in transformation optics and room
acoustics.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
app11178084/s1.
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