28 research outputs found

    Application of the Ceditest FMDV type O and FMDV-NS enzyme-linked immunosorbent assays for detection of antibodies against Foot-and-mouth disease virus in selected livestock and wildlife species in Uganda

    Get PDF
    Diagnosis and control of Foot-and-mouth disease virus (FMDV) requires rapid and sensitive diagnostic tests. Two antibody enzyme-linked immunosorbent assay (ELISA) kits, Ceditest® FMDV-NS for the detection of antibodies against the nonstructural proteins of all FMDV serotypes and Ceditest® FMDV type O for the detection of antibodies against serotype O, were evaluated under African endemic conditions where the presence of multiple serotypes and the use of nonpurified vaccines complicate serological diagnosis. Serum samples from 218 African buffalo, 758 cattle, 304 goats, and 88 sheep were tested using both kits, and selected samples were tested not only in serotype-specific ELISAs for antibodies against primarily FMDV serotype O, but also against other serotypes. The FMDV-NS assay detected far more positive samples (93%) than the FMDV type O assay (30%) in buffalo (P < 0.05), with predominant antibodies against the South African Territories (SAT) serotypes, while the seroprevalence was generally comparable in cattle with antibodies against serotype O elicited by infection and/or vaccination. However, some districts had higher seroprevalence using the FMDV type O assay indicating vaccination without infection, while 1 cattle herd with antibodies against the SAT serotypes had far more positive samples (85%) using the FMDV-NS versus the FMDV type O (10%), consistent with the latter test\u27s lower sensitivity for antibodies against SAT serotypes. Based on the current investigation, the FMDV type O ELISA may be limited by the presence of SAT serotypes. The FMD NS assay worked well as a screening test for antibodies against all FMDV serotypes present in Uganda; however, as long as nonpurified vaccines are applied in the region, this test cannot be used to differentiate between vaccinated and infected animals

    Development and Testing of a Field Diagnostic Assay for Peste des Petits Ruminants Virus

    Get PDF
    We have developed an immunochromatographic test for the diagnosis of peste des petits ruminants (PPR) under field conditions. The diagnostic assay has been tested in the laboratory and also under field conditions in Ivory Coast, Pakistan, Ethiopia and Uganda. The test is carried out on a superficial swab sample (ocular or nasal) and showed a sensitivity of 84% relative to PCR. The specificity was 95% over all nasal and ocular samples. The test detected as little as 103 TCID50 (50% tissue culture infectious doses) of cell culture‐grown virus, and detected virus isolates representing all four known genetic lineages of peste des petits ruminants virus. Virus could be detected in swabs from animals as early as 4 days post‐infection, at a time when clinical signs were minimal. Feedback from field trials was uniformly positive, suggesting that this diagnostic tool may be useful for current efforts to control the spread of PPR

    Peste des Petits Ruminants at the Wildlife–Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa

    Get PDF
    In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife–livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest–savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs

    Serological profile of foot-and-mouth disease in wildlife populations of West and Central Africa with special reference to Syncerus caffer subspecies

    Get PDF
    The role which West and Central African wildlife populations might play in the transmission dynamics of FMD is not known nor have studies been performed in order to assess the distribution and prevalence of FMD in wild animal species inhabiting those specific regions of Africa. This study reports the FMD serological profile extracted from samples (n = 696) collected from wildlife of West and Central Africa between 1999 and 2003. An overall prevalence of FMDV NSP reactive sera of 31.0% (216/696) was estimated, where a significant difference in seropositivity (p = 0.000) was reported for buffalo (64.8%) as opposed to other wild animal species tested (17.8%). Different levels of exposure to the FMDV resulted for each of the buffalo subspecies sampled (p = 0.031): 68.4%, 50.0% and 0% for Nile Buffalo, West African Buffalo and African Forest Buffalo, respectively. The characterisation of the FMDV serotypes tested for buffalo found presence of antibodies against all the six FMDV serotypes tested, although high estimates for type O and SAT 3 were reported for Central Africa. Different patterns of reaction to the six FMDV serotypes tested were recorded, from sera only positive for a single serotype to multiple reactivities. The results confirmed that FMDV circulates in wild ruminants populating both West and Central Africa rangelands and in particular in buffalo, also suggesting that multiple FMDV serotypes might be involved with type O, SAT 2 and SAT 1 being dominant. Differences in serotype and spill-over risk between wildlife and livestock likely reflect regional geography, historical circulation and differing trade and livestock systems

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Seroprevalence of Peste des Petits Ruminants (PPR) virus antibodies in goats and sheep in north-eastern Uganda

    No full text
    Peste des petits ruminants (PPR) is a contagious viral disease of small ruminants in Africa and Asia. PPR outbreak in Uganda was reported in Karamoja region in July, 2007, but the disease epidemiology has not been fully explored. This study was undertaken to determine the seroprevalence and the extent of distribution of PPR antibodies in goats and sheep within the districts surrounding Karamoja so as to guide future control efforts. Serum samples were purposively collected from eleven districts including Soroti, Kumi, Kapchorwa, Katakwi, Sironko, Bukedea, Bukwa, Kaberamaido, Lira, Pader, and Kitgum based on the history of poor goat and sheep health. Seroprevalence of PPR virus antibodies was determined using competitive enzyme linked immunosorbent assay (c-ELISA). The overall seroprevalence of PPR virus antibodies in sheep and goats in the districts surrounding Karamoja region was 9.4 % (CI=95%, 7.6-11.2). No PPR virus antibodies were detected in sera from Kaberamaido and Soroti districts while Kitgum district recorded the highest seroprevalence of 21.3% (CI=95% 16.6- 25.8). This study shows that PPR antibodies were distributed beyond the initially confirmed Karamoja region. There is need for further research on the epidemiology and risk factors of PPR in Uganda.Key-words: Peste des petits ruminants (PPR), seroprevalence, goats and sheep, Uganda

    Antibodies against foot and-mouth disease (FMD) virus in African buffalos (Syncerus caffer)

    No full text
    Abstract: The aim of this study was to determine the seroprevalence and serotype-specificity of the circulating antibodies against Foot-and-Mouth Disease Virus (FM DV) in cattle in Kasese and Bushenyi districts in Uganda. A total of 309 serum samples were collected and tested for antibodies against Non-Structural (NS) and Structural Proteins (SP) using Ceditest® FMDV-NS and Ceditest® FMDV type O test kits. Seroprevalences were much higher in Kasese in both tests (61 and 43%, respectively) than in Bushenyi (3 and 4%, respectively). A high proportion of sera, that tested positive in the NSP test, were subjected to seven serotype specific blocking ELISAs for antibodies against the seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2 and SAT 3). The study showed presence of antibodies against four FMDV serotypes with decreasing magnitude as follows: O&gt; SAT 1&gt; SAT 3/SAT 2. It is recommended to develop sampling schemes to include virus recovery and identification, as well as to focus serum sampling on young unvaccinated stock
    corecore