2,493 research outputs found
On stoichiometry and intermixing at the spinel/perovskite interface in CoFe2O4/BaTiO3 thin films
The performance of complex oxide heterostructures depends primarily on the interfacial coupling of the two component structures. This interface character inherently varies with the synthesis method and conditions used since even small composition variations can alter the electronic, ferroelectric, or magnetic functional properties of the system. The focus of this article is placed on the interface character of a pulsed laser deposited CoFe2O4/BaTiO3 thin film. Using a range of state-of-the-art transmission electron microscopy methodologies, the roles of substrate morphology, interface stoichiometry, and cation intermixing are determined on the atomic level. The results reveal a surprisingly uneven BaTiO3 substrate surface formed after the film deposition and Fe atom incorporation in the top few monolayers inside the unit cell of the BaTiO3 crystal. Towards the CoFe2O4 side, a disordered region extending several nanometers from the interface was revealed and both Ba and Ti from the substrate were found to diffuse into the spinel layer. The analysis also shows that within this somehow incompatible composite interface, a different phase is formed corresponding to the compound Ba2Fe3Ti5O15, which belongs to the ilmenite crystal structure of FeTiO3 type. The results suggest a chemical activity between these two oxides, which could lead to the synthesis of complex engineered interfaces
Directional Dependence of ΛCDM Cosmological Parameters
We study hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe 9 yr data. We analyze the combined V- and W-band sky maps, after application of the KQ85 mask, and find that the asymmetry is statistically significant at the 3.4σ confidence level for ℓ = 2-600, where the data are signal-dominated, with a preferred asymmetry direction (l, b) = (227, –27). Individual asymmetry axes estimated from six independent multipole ranges are all consistent with this direction. Subsequently, we estimate cosmological parameters on different parts of the sky and show that the parameters A_s, n_s , and Ω_b are the most sensitive to this power asymmetry. In particular, for the two opposite hemispheres aligned with the preferred asymmetry axis, we find n_s = 0.959 ± 0.022 and n_s = 0.989 ± 0.024, respectively
Searching for hidden mirror symmetries in CMB fluctuations from WMAP 7 year maps
We search for hidden mirror symmetries at large angular scales in the WMAP 7
year Internal Linear Combination map of CMB temperature anisotropies using
global pixel based estimators introduced for this aim. Two different axes are
found for which the CMB intensity pattern is anomalously symmetric (or
anti-symmetric) under reflection with respect to orthogonal planes at the
99.84(99.96)% CL (confidence level), if compared to a result for an arbitrary
axis in simulations without the symmetry. We have verified that our results are
robust to the introduction of the galactic mask. The direction of such axes is
close to the CMB kinematic dipole and nearly orthogonal to the ecliptic plane,
respectively. If instead the real data are compared to those in simulations
taken with respect to planes for which the maximal mirror symmetry is generated
by chance, the confidence level decreases to 92.39 (76.65)%. But when the
effect in question translates into the anomalous alignment between normals to
planes of maximal mirror (anti)-symmetry and these natural axes mentioned. We
also introduce the representation of the above estimators in the harmonic
domain, confirming the results obtained in the pixel one. The symmetry anomaly
is shown to be almost entirely due to low multipoles, so it may have a
cosmological and even primordial origin. Contrary, the anti-symmetry one is
mainly due to intermediate multipoles that probably suggests its
non-fundamental nature. We have demonstrated that these anomalies are not
connected to the known issue of the low variance in WMAP observations and we
have checked that axially symmetric parts of these anomalies are small, so that
the axes are not the symmetry ones.Comment: 18 pages, 10 figures, 2 tables. Consideration and discussion
expanded, 5 figures and 1 table added, main conclusions unchange
Diagnostic Performance of Cerebrospinal Fluid Neurofilament Light Chain and Soluble Amyloid-β Protein Precursor β in the Subcortical Small Vessel Type of Dementia
Background: The subcortical small vessel type of dementia (SSVD) is a common subtype of vascular dementia, but there is a lack of disease-specific cerebrospinal fluid (CSF) biomarkers. Objective: We investigated whether CSF concentrations of neurofilament light chain (NFL), soluble amyloid-β protein precursor α (sAβPPα), sAβPPβ, and CSF/serum albumin ratio could separate SSVD from healthy controls, Alzheimer's disease (AD), and mixed dementia (combined AD and SSVD). Methods: This was a mono-center study of patients with SSVD (n = 38), AD (n = 121), mixed dementia (n = 62), and controls (n = 96). The CSF biomarkers were measured using immunoassays, and their independent contribution to the separation between groups were evaluated using the Wald test. Then, the area under the receiver operating characteristics curve (AUROC) and 95% confidence intervals (CIs) were calculated. Results: Elevated neurofilament light chain (NFL) and decreased sAβPPβ independently separated SSVD from controls, and sAβPPβ also distinguished SSVD from AD and mixed dementia. The combination of NFL and sAβPPβ discriminated SSVD from controls with high accuracy (AUROC 0.903, 95% CI: 0.834-0.972). Additionally, sAβPPβ combined with the core AD biomarkers (amyloid-β42, total tau, and phosphorylated tau181) had a high ability to separate SSVD from AD (AUROC 0.886, 95% CI: 0.830-0.942) and mixed dementia (AUROC 0.903, 95% CI: 0.838-0.968). Conclusions: The high accuracy of NFL and sAβPPβ to separate SSVD from controls supports that SSVD is a specific diagnostic entity. Moreover, SSVD was distinguished from AD and mixed dementia using sAβPPβ in combination with the core AD biomarkers
Longitudinal dopamine D2 receptor changes and cerebrovascular health in aging
BACKGROUND AND OBJECTIVES: Cross-sectional studies suggest marked dopamine (DA) decline in aging, but longitudinal evidence is lacking. The aim of this study was to estimate within-person decline rates for DA D2-like receptors (DRD2) in aging and examine factors that may contribute to individual differences in DRD2 decline rates. METHODS: We investigated 5-year within-person changes in DRD2 availability in a sample of older adults. At both occasions, PET with 11C-raclopride and MRI were used to measure DRD2 availability in conjunction with structural and vascular brain integrity. RESULTS: Longitudinal analyses of the sample (baseline: n = 181, ages: 64-68 years, 100 men and 81 women; 5-year follow-up: n = 129, 69 men and 60 women) revealed aging-related striatal and extrastriatal DRD2 decline, along with marked individual differences in rates of change. Notably, the magnitude of striatal DRD2 decline was ∼50% of past cross-sectional estimates, suggesting that the DRD2 decline rate has been overestimated in past cross-sectional studies. Significant DRD2 reductions were also observed in select extrastriatal regions, including hippocampus, orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC). Distinct profiles of correlated DRD2 changes were found across several associative regions (ACC, dorsal striatum, and hippocampus) and in the reward circuit (nucleus accumbens and OFC). DRD2 losses in associative regions were associated with white matter lesion progression, whereas DRD2 losses in limbic regions were related to reduced cortical perfusion. DISCUSSION: These findings provide the first longitudinal evidence for individual and region-specific differences of DRD2 decline in older age and support the hypothesis that cerebrovascular factors are linked to age-related dopaminergic decline
Prevalence and severity of cardiac abnormalities and arteriosclerosis in farmed rainbow trout (Oncorhynchus mykiss)
Cardiovascular disease may pose a major threat to the health and welfare of farmed fish. By investigating a range of established cardiovascular disease indicators, we aimed to determine the prevalence, severity and consequences of this affliction in farmed rainbow trout (Oncorhynchus mykiss) from an open cage farm in the Baltic Sea, an open cage farm in a freshwater lake, and a land-based recirculating aquaculture system. We also aimed to identify environmental, anthropogenic and physiological factors contributing towards the development of the disease. The majority of trout possessed enlarged hearts with rounded ventricles (mean height:width ratios of 1.0-1.1 c.f. similar to 1.3 in wild fish) and a high degree of vessel misalignment (mean angles between the longitudinal ventricular axis and the axis of the bulbus arteriosus of 28-31 degrees c.f. similar to 23 degrees in wild fish). The prevalence and severity of coronary arteriosclerosis was also high, as 92-100% of fish from the different aquaculture facilities exhibited coronary lesions. Mean lesion incidence and severity indices were 67-95% and 3.1-3.9, respectively, which resulted in mean coronary arterial blockages of 19-32%. To evaluate the functional significance of these findings, we modelled the effects of arterial blockages on coronary blood flow and experimentally tested the effects of coronary occlusion in a sub-sample of fish. The observed coronary blockages were estimated to reduce coronary blood flow by 34-54% while experimental coronary occlusion adversely affected the electrocardiogram of trout. Across a range of environmental (water current, predation), anthropogenic (boat traffic intensity, hatchery of origin, brand of feed pellets) and physiological factors (condition factor, haematological and plasma indices), the hatchery of origin was the main factor contributing towards the observed variation in the development of cardiovascular disease. Therefore, further research on the effects of selective breeding programs and rearing strategies on the development of cardiovascular disease is needed to improve the welfare and health of farmed fish
Crossing the Dripline to 11N Using Elastic Resonance Scattering
The level structure of the unbound nucleus 11N has been studied by 10C+p
elastic resonance scattering in inverse geometry with the LISE3 spectrometer at
GANIL, using a 10C beam with an energy of 9.0 MeV/u. An additional measurement
was done at the A1200 spectrometer at MSU. The excitation function above the
10C+p threshold has been determined up to 5 MeV. A potential-model analysis
revealed three resonance states at energies 1.27 (+0.18-0.05) MeV (Gamma=1.44
+-0.2 MeV), 2.01(+0.15-0.05) MeV, (Gamma=0.84 +-$0.2 MeV) and 3.75(+-0.05) MeV,
(Gamma=0.60 +-0.05 MeV) with the spin-parity assignments I(pi) =1/2+, 1/2- and
5/2+, respectively. Hence, 11N is shown to have a ground state parity inversion
completely analogous to its mirror partner, 11Be. A narrow resonance in the
excitation function at 4.33 (+-0.05) MeV was also observed and assigned
spin-parity 3/2-.Comment: 14 pages, 9 figures, twocolumn Accepted for publication in PR
- …