77 research outputs found

    Clonal evolution in tyrosine kinase inhibitor-resistance: lessons from in vitro-models

    Get PDF
    IntroductionResistance in anti-cancer treatment is a result of clonal evolution and clonal selection. In chronic myeloid leukemia (CML), the hematopoietic neoplasm is predominantly caused by the formation of the BCR::ABL1 kinase. Evidently, treatment with tyrosine kinase inhibitors (TKIs) is tremendously successful. It has become the role model of targeted therapy. However, therapy resistance to TKIs leads to loss of molecular remission in about 25% of CML patients being partially due to BCR::ABL1 kinase mutations, while for the remaining cases, various other mechanisms are discussed.MethodsHere, we established an in vitro-TKI resistance model against the TKIs imatinib and nilotinib and performed exome sequencing.ResultsIn this model, acquired sequence variants in NRAS, KRAS, PTPN11, and PDGFRB were identified in TKI resistance. The well-known pathogenic NRAS p.(Gln61Lys) variant provided a strong benefit for CML cells under TKI exposure visible by increased cell number (6.2-fold, p < 0.001) and decreased apoptosis (-25%, p < 0.001), proving the functionality of our approach. The transfection of PTPN11 p.(Tyr279Cys) led to increased cell number (1.7-fold, p = 0.03) and proliferation (2.0-fold, p < 0.001) under imatinib treatment.DiscussionOur data demonstrate that our in vitro-model can be used to study the effect of specific variants on TKI resistance and to identify new driver mutations and genes playing a role in TKI resistance. The established pipeline can be used to study candidates acquired in TKI-resistant patients, thereby providing new options for the development of new therapy strategies to overcome resistance

    The genome of a songbird

    Get PDF
    The zebra finch is an important model organism in several fields1,2 with unique relevance to human neuroscience3,4. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken5—the only bird with a sequenced genome until now6. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes7. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour

    A Natural mtDNA Polymorphism in Complex III Is a Modifier of Healthspan in Mice

    Get PDF
    In this study, we provide experimental evidence that a maternally inherited polymorphism in the mitochondrial cytochrome b gene (mt-Cytb; m.15124A>G, Ile-Val) in mitochondrial complex III resulted in middle-aged obesity and higher susceptibility to diet-induced obesity, as well as age-related inflammatory disease, e.g., ulcerative dermatitis, in mice. As a consequence of the gene variation, we observed alterations in body composition, metabolism and mitochondrial functions, i.e., increased mitochondrial oxygen consumption rate and higher levels of reactive oxygen species, as well as in the commensal bacterial composition in the gut, with higher abundance of Proteobacteria in mice carrying the variant. These observations are in line with the previously described links of the mitochondrial complex III gene with obesity and metabolic diseases in humans. Given that these functional changes by the G variant at m.15124 in the mt-Cytb are already present in young mice that were kept under normal condition, it is plausible that the m.15124A>G variant is a disease susceptibility modifier to the diseases induced by additional stressors, i.e., dietary and/or aging stress, and that the variant results in the higher incidence of clinical diseases presentation in C57BL/6J-mt129S1/SvlmJ than C57BL/6J mice. Thus, mtDNA variants could be potential biomarkers to evaluate the healthspan

    Molecular evolution of genes in avian genomes

    Get PDF
    Nam K, Mugal C, Nabholz B, et al. Molecular evolution of genes in avian genomes. Genome Biology. 2010;11(6): R68.Background: Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1:1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results: We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an overrepresentation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions: Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between ω and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes

    Case report: Schnitzler-like syndrome without monoclonal gammopathy

    Get PDF
    Schnitzler syndrome is a rare autoinflammatory disorder characterized by urticarial rash, joint pain, recurrent fever, leucocytosis, elevated C-reactive protein (CRP) and serum amyloid A (SAA), and monoclonal IgM or IgG gammopathy. According to the Strasbourg criteria, both urticarial rash and gammopathy are mandatorily required for the diagnosis of Schnitzler’s syndrome. However, incomplete variants lacking either skin symptoms or monoclonal gammopathy have also been described. Here, we report a case in which the diagnosis of Schnitzler-like syndrome was made despite the absence of gammopathy, based on neutrophilic dermal inflammation, episodic and excessive increase in inflammatory parameters, and prompt response to anakinra, a soluble IL1 receptor antagonist (sIL-1RA). In addition, we detected neutrophil epitheliotropism, which is highly suggestive of autoinflammatory disease. Using whole-exome sequencing, we were unable to find a causative pathogenic mutation but did find several mutations possibly related to the inflammatory processes in this patient. This and other cases highlight that the existing Strasbourg criteria are too strict to capture Schnitzler-like syndromes that may respond well and rapidly to IL1 inhibition. Recurrent episodes of disease with normalization of inflammatory symptoms in the interval, rapid response to anakinra, and neutrophilic epitheliotropism in a lesional skin biopsy may help confirm the diagnosis of Schnitzler-like syndrome

    A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1

    Get PDF
    Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17-92 cluster, which have been implicated in b-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial-mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the "islet/insulinoma tumors" (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as "metastasis-like/primary" (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models

    Altered Composition of the Oral Microbiota in Depression Among Cigarette Smokers: A Pilot Study

    Get PDF
    Alterations in the oral microbiota composition may influence mental health. However, linkages between compositional changes in the oral microbiota and their role in mental health among cigarette smokers remain largely unknown. In this study, we used shotgun metagenomics data for the oral microbiome of 105 participants. The data showed Bacteroidota, Fusobacteriota, Firmicutes, Proteobacteria, and Actinobacteria to be the most abundant phyla; Streptococcus, Haemophilus D, and Veillonella are the most abundant genera. Then, we clustered our subjects into avoidance and activation groups based on the behavioral activation for depression scale (BADS). Interestingly, the avoidance group exhibited a higher oral microbiome richness and diversity (alpha diversity). Differential abundance testing between BADS avoidance and activation groups showed the phyla Bacteroidota (effect size 0.5047, q = 0.0037), Campylobacterota (effect size 0.4012, q = 0.0276), Firmicutes A (effect size 0.3646, q = 0.0128), Firmicutes I (effect size 0.3581, q = 0.0268), and Fusobacteriota (effect size 0.6055, q = 0.0018) to be significantly increased in the avoidance group, but Verrucomicrobiota (effect size−0.6544, q = 0.0401), was found to be significantly decreased in the avoidance risk group. Network analysis of the 50 genera displaying the highest variation between both groups identified Campylobacter B, Centipeda, and Veillonella as hub nodes in the avoidance group. In contrast, Haemophilus and Streptococcus were identified as hub nodes in the activation group. Next, we investigated functional profiles of the oral microbiota based on BADS avoidance and activation groups and found Lysine degradations pathway was significantly enriched between both groups (ANCOM-BC, q = 0.0692). Altogether, we provide evidence for the presence of depression-related changes in the oral microbiota of smokers and possible functional contribution. The identified differences provide new information to enrich our understanding of oral microbiota-brain axis interplay and their potential impact on mental health

    A Mitochondrial Polymorphism Alters Immune Cell Metabolism and Protects Mice from Skin Inflammation

    Get PDF
    Several genetic variants in the mitochondrial genome (mtDNA), including ancient polymorphisms, are associated with chronic inflammatory conditions, but investigating the functional consequences of such mtDNA polymorphisms in humans is challenging due to the influence of many other polymorphisms in both mtDNA and the nuclear genome (nDNA). Here, using the conplastic mouse strain B6-mtFVB, we show that in mice, a maternally inherited natural mutation (m.7778G > T) in the mitochondrially encoded gene ATP synthase 8 (mt-Atp8) of complex V impacts on the cellular metabolic profile and effector functions of CD4+ T cells and induces mild changes in oxidative phosphorylation (OXPHOS) complex activities. These changes culminated in significantly lower disease susceptibility in two models of inflammatory skin disease. Our findings provide experimental evidence that a natural variation in mtDNA influences chronic inflammatory conditions through alterations in cellular metabolism and the systemic metabolic profile without causing major dysfunction in the OXPHOS system

    Nonlinear Dynamics of Nonsynonymous (dN) and Synonymous (dS) Substitution Rates Affects Inference of Selection

    Get PDF
    Selection modulates gene sequence evolution in different ways by constraining potential changes of amino acid sequences (purifying selection) or by favoring new and adaptive genetic variants (positive selection). The number of nonsynonymous differences in a pair of protein-coding sequences can be used to quantify the mode and strength of selection. To control for regional variation in substitution rates, the proportionate number of nonsynonymous differences (dN) is divided by the proportionate number of synonymous differences (dS). The resulting ratio (dN/dS) is a widely used indicator for functional divergence to identify particular genes that underwent positive selection. With the ever-growing amount of genome data, summary statistics like mean dN/dS allow gathering information on the mode of evolution for entire species. Both applications hinge on the assumption that dS and mean dS (∼branch length) are neutral and adequately control for variation in substitution rates across genes and across organisms, respectively. We here explore the validity of this assumption using empirical data based on whole-genome protein sequence alignments between human and 15 other vertebrate species and several simulation approaches. We find that dN/dS does not appropriately reflect the action of selection as it is strongly influenced by its denominator (dS). Particularly for closely related taxa, such as human and chimpanzee, dN/dS can be misleading and is not an unadulterated indicator of selection. Instead, we suggest that inconsistencies in the behavior of dN/dS are to be expected and highlight the idea that this behavior may be inherent to taking the ratio of two randomly distributed variables that are nonlinearly correlated. New null hypotheses will be needed to adequately handle these nonlinear dynamics

    ConDeTri - A Content Dependent Read Trimmer for Illumina Data

    Get PDF
    During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not yet been established. We present ConDeTri, a method for content dependent read trimming for next generation sequencing data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of arbitrary length and it is independent from sequencing coverage and user interaction. ConDeTri is able to trim and remove reads with low quality scores to save computational time and memory usage during de novo assemblies. Low coverage or large genome sequencing projects will especially gain from trimming reads. The method can easily be incorporated into preprocessing and analysis pipelines for Illumina data
    corecore