369 research outputs found

    Homotopy theoretic models of identity types

    Full text link
    This paper presents a novel connection between homotopical algebra and mathematical logic. It is shown that a form of intensional type theory is valid in any Quillen model category, generalizing the Hofmann-Streicher groupoid model of Martin-Loef type theory.Comment: 11 page

    Topos Semantics for Higher-Order Modal Logic

    Full text link
    We define the notion of a model of higher-order modal logic in an arbitrary elementary topos E\mathcal{E}. In contrast to the well-known interpretation of (non-modal) higher-order logic, the type of propositions is not interpreted by the subobject classifier ΩE\Omega_{\mathcal{E}}, but rather by a suitable complete Heyting algebra HH. The canonical map relating HH and ΩE\Omega_{\mathcal{E}} both serves to interpret equality and provides a modal operator on HH in the form of a comonad. Examples of such structures arise from surjective geometric morphisms f:FEf : \mathcal{F} \to \mathcal{E}, where H=fΩFH = f_\ast \Omega_{\mathcal{F}}. The logic differs from non-modal higher-order logic in that the principles of functional and propositional extensionality are no longer valid but may be replaced by modalized versions. The usual Kripke, neighborhood, and sheaf semantics for propositional and first-order modal logic are subsumed by this notion

    Completeness and Categoricty, Part II: 20th Century Metalogic to 21st Century Semantics

    Get PDF
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics so as to shed new light on the relevant strengths and limits of higher-order logic

    Formal concept analysis and structures underlying quantum logics

    Get PDF
    A Hilbert space HH induces a formal context, the Hilbert formal context H\overline H, whose associated concept lattice is isomorphic to the lattice of closed subspaces of HH. This set of closed subspaces, denoted C(H)\mathcal C(H), is important in the development of quantum logic and, as an algebraic structure, corresponds to a so-called ``propositional system'', that is, a complete, atomistic, orthomodular lattice which satisfies the covering law. In this paper, we continue with our study of the Chu construction by introducing the Chu correspondences between Hilbert contexts, and showing that the category of Propositional Systems, PropSys, is equivalent to the category of ChuCorsH\text{ChuCors}_{\mathcal H} of Chu correspondences between Hilbert contextsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Bigraphical modelling of architectural patterns

    Get PDF
    Selected for publication in FACS'2011 post-proceedings, to appear in Springer Lecture Notes in Computer ScienceArchery is a language for behavioural modelling of architectural patterns, supporting hierarchical composition and a type discipline. This paper extends Archery to cope with the patterns' structural dimension through a set of (re-)configuration combinators and constraints that all instances of a pattern must obey. Both types and instances of architectural patterns are semantically represented as bigraphical reactive systems and operations upon them as reaction rules. Such a bigraphical semantics provides a rigorous model for Archery patterns and reduces constraint verification in architectures to a type-checking problem.(undefined

    A general construction of internal sheaves in algebraic set theory

    Get PDF
    We present a solution to the problem of defining a counterpart in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothen-dieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the existing topos-theoretic results

    Involutive Categories and Monoids, with a GNS-correspondence

    Get PDF
    This paper develops the basics of the theory of involutive categories and shows that such categories provide the natural setting in which to describe involutive monoids. It is shown how categories of Eilenberg-Moore algebras of involutive monads are involutive, with conjugation for modules and vector spaces as special case. The core of the so-called Gelfand-Naimark-Segal (GNS) construction is identified as a bijective correspondence between states on involutive monoids and inner products. This correspondence exists in arbritrary involutive categories
    corecore