29 research outputs found

    Normal growth and development in mice over-expressing the CCN family member WISP3

    Get PDF
    Loss-of-function mutations in the gene WISP3 cause the autosomal recessive human skeletal disease Progressive Pseudorheumatoid Dysplasia, whereas mice with knockout mutations of Wisp3 have no phenotype. The lack of a phenotype in the Wisp3 knockout mice has constrained studies of the protein’s in vivo function. Over-expression experiments in zebrafish indicated that WISP3 may function as a BMP and Wnt signaling modulator. To determine whether these biologic activities are retained in mice, we created two strains of transgenic mice that over-express WISP3 in a broad array of tissues. Despite strong and persistent protein over-expression, the transgenic mice remained phenotypically indistinguishable from their non-transgenic littermates. Surprisingly, WISP3 contained in conditioned medium recovered from transgenic mouse primary kidney cell cultures was able to bind BMP and to inhibit BMP signaling in vitro. Factors that account for the difference between the in vitro and in vivo activities of WISP3 remain unknown. At present, the mouse remains a challenging model organism in which to explore the biologic function of WISP3

    Sclerostin: Current Knowledge and Future Perspectives

    Get PDF
    In recent years study of rare human bone disorders has led to the identification of important signaling pathways that regulate bone formation. Such diseases include the bone sclerosing dysplasias sclerosteosis and van Buchem disease, which are due to deficiency of sclerostin, a protein secreted by osteocytes that inhibits bone formation by osteoblasts. The restricted expression pattern of sclerostin in the skeleton and the exclusive bone phenotype of good quality of patients with sclerosteosis and van Buchem disease provide the basis for the design of therapeutics that stimulate bone formation. We review here current knowledge of the regulation of the expression and formation of sclerostin, its mechanism of action, and its potential as a bone-building treatment for patients with osteoporosis

    Auxin Immunolocalization in Plant Tissues

    No full text
    The major naturally occurring auxin, indol-3 acetic acid (IAA), coordinates many growth and differentiation processes by modulating gene expression during plant development. The sites of IAA biosynthesis and its polar transport (PAT) routes determine auxin accumulation and distribution during growth. From many studies on the model plant Arabidopsis thaliana over the last years, it has become evident that the expression and sub-cellular localization of multiple transport proteins are required to initiate and maintain directional auxin fl ows within plant organs and tissues, creating the auxin concentration gradients that regulate plant development. For this reason, the understanding of auxin dependent pattern formation also relies on the possibility to directly visualize auxin concentration and distribution in the tissues. The production and isolation of antibodies highly speci fi c for IAA provide the means to detect and localize free IAA in different plant species during tissues differentiation and organ development. The immunolocalization protocol presented here uses a monoclonal anti-IAA speci fi c antibody that can be used to visualize auxin accumulation in different organs and tissues during plant development. We successfully used this protocol to determine IAA maxima during kernel and in fl orescence development in maize, highlighting also alterations in auxin accumulation patterns in a mutant with reduced auxin accumulation capacity and in plants treated with an inhibitor of auxin transport. © Springer Science+Business Media New York 2013

    The CCN family member Wisp3, mutant in progressive pseudorheumatoid dysplasia, modulates BMP and Wnt signaling

    No full text
    In humans, loss-of-function mutations in the gene encoding Wnt1 inducible signaling pathway protein 3 (WISP3) cause the autosomal-recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD). However, in mice there is no apparent phenotype caused by Wisp3 deficiency or overexpression. Consequently, the in vivo activities of Wisp3 have remained elusive. We cloned the zebrafish ortholog of Wisp3 and investigated its biologic activity in vivo using gain-of-function and loss-of-function approaches. Overexpression of zebrafish Wisp3 protein inhibited bone morphogenetic protein (BMP) and Wnt signaling in developing zebrafish. Conditioned medium–containing zebrafish and human Wisp3 also inhibited BMP and Wnt signaling in mammalian cells by binding to BMP ligand and to the Wnt coreceptors low-density lipoprotein receptor–related protein 6 (LRP6) and Frizzled, respectively. Wisp3 proteins containing disease-causing amino acid substitutions found in patients with PPD had reduced activity in these assays. Morpholino-mediated inhibition of zebrafish Wisp3 protein expression in developing zebrafish affected pharyngeal cartilage size and shape. These data provide a biologic assay for Wisp3, reveal a role for Wisp3 during zebrafish cartilage development, and suggest that dysregulation of BMP and/or Wnt signaling contributes to cartilage failure in humans with PPD
    corecore