6 research outputs found
Next-to-leading and resummed BFKL evolution with saturation boundary
We investigate the effects of the saturation boundary on small-x evolution at
the next-to-leading order accuracy and beyond. We demonstrate that the
instabilities of the next-to-leading order BFKL evolution are not cured by the
presence of the nonlinear saturation effects, and a resummation of the higher
order corrections is therefore needed for the nonlinear evolution. The
renormalization group improved resummed equation in the presence of the
saturation boundary is investigated, and the corresponding saturation scale is
extracted. A significant reduction of the saturation scale is found, and we
observe that the onset of the saturation corrections is delayed to higher
rapidities. This seems to be related to the characteristic feature of the
resummed splitting function which at moderately small values of x possesses a
minimum.Comment: 34 page
PTH-131 current gastroenterology teaching in UK medical schools: A BSG survey
In this paper we consider closed loop two-echelon repairable item systems with repair facilities both at a number of local service centers (called bases) and at a central location (the depot). The goal of the system is to maintain a number of production facilities (one at each base) in optimal operational condition. Each production facility consists of a number of identical machines which may fail incidentally. Each repair facility may be considered to be a multi-server station, while any transport from the depot to the bases is modeled as an ample server. At all bases as well as at the depot, ready-for-use spare parts (machines) are kept in stock. Once a machine in the production cell of a certain base fails, it is replaced by a ready-for-use machine from that bases stock, if available. The failed machine is either repaired at the base or repaired at the central repair facility. In the case of local repair, the machine is added to the local spare parts stock as a ready-for-use machine after repair. If a repair at the depot is needed, the base orders a machine from the central spare parts stock to replenish its local stock, while the failed machine is added to the central stock after repair. Orders are satisfied on a first-come-first-served basis while any requirement that cannot be satisfied immediately either at the bases or at the depot is backlogged. In case of a backlog at a certain base, that bases production cell performs worse.\ud
To determine the steady state probabilities of the system, we develop a slightly aggregated system model and propose a special near-product-form solution that provides excellent approximations of relevant performance measures. The depot repair shop is modeled as a server with state-dependent service rates, of which the parameters follow from an application of Nortons theorem for Closed Queuing Networks. A special adaptation to a general Multi-Class Marginal Distribution Analysis (MDA) algorithm is proposed, on which the approximations are based. All relevant performance measures can be calculated with errors which are generally less than one percent, when compared to simulation results. The approximations are used to find the stock levels which maximize the availibility given a fixed configuration of machines and servers and a certain budget for storing items
Recommended from our members
A 16 hr Transit of Kepler-167 e Observed by the Ground-based Unistellar Telescope Network
More than 5000 exoplanets have been confirmed and among them almost 4000 were discovered by the transit method. However, few transiting exoplanets have an orbital period greater than 100 days. Here we report a transit detection of Kepler-167 e, a “Jupiter analog” exoplanet orbiting a K4 star with a period of 1071 days, using the Unistellar ground-based telescope network. From 2021 November 18 to 20, citizen astronomers located in nine different countries gathered 43 observations, covering the 16 hr long transit. Using a nested sampling approach to combine and fit the observations, we detected the midtransit time to be UTC 2021 November 19 17:20:51 with a 1σ uncertainty of 9.8 minutes, making it the longest-period planet to ever have its transit detected from the ground. This is the fourth transit detection of Kepler-167 e, but the first made from the ground. This timing measurement refines the orbit and keeps the ephemeris up to date without requiring space telescopes. Observations like this demonstrate the capabilities of coordinated networks of small telescopes to identify and characterize planets with long orbital periods. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
The Unistellar Exoplanet Campaign: Citizen Science Results and Inherent Education Opportunities
This paper presents early results from and prospects for exoplanet science using a citizen science private/public partnership observer network managed by the SETI Institute in collaboration with Unistellar. The network launched in 2020 January and includes 163 citizen scientist observers across 21 countries. These observers can access a citizen science mentoring service developed by the SETI Institute and are also equipped with Unistellar Enhanced Vision Telescopes. Unistellar technology and the campaign’s associated photometric reduction pipeline enable each telescope to readily obtain and communicate light curves to observers with signal-to-noise ratio suitable for publication in research journals. Citizen astronomers of the Unistellar Exoplanet (UE) Campaign routinely measure transit depths of ≳1% and contribute their results to the exoplanet research community. The match of the detection system, targets, and scientific and educational goals is robust. Results to date include 281 transit detections out of 651 processed observations. In addition to this campaign’s capability to contribute to the professional field of exoplanet research, UE endeavors to drive improved science, technology, engineering, and mathematics education outcomes by engaging students and teachers as participants in science investigations, that is, learning science by doing science. © 2023. The Author(s). Published by IOP Publishing Ltd on behalf of the Astronomical Society of the Pacific (ASP). All rights reserved.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at s
The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K⁎(892)0 and ϕ(1020) mesons at midrapidity in pp collisions at s= 13 TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed