714 research outputs found
A mesoscopic ring as a XNOR gate: An exact result
We describe XNOR gate response in a mesoscopic ring threaded by a magnetic
flux . The ring is attached symmetrically to two semi-infinite
one-dimensional metallic electrodes and two gate voltages, viz, and
, are applied in one arm of the ring which are treated as the inputs of
the XNOR gate. The calculations are based on the tight-binding model and the
Green's function method, which numerically compute the conductance-energy and
current-voltage characteristics as functions of the ring-to-electrode coupling
strength, magnetic flux and gate voltages. Our theoretical study shows that,
for a particular value of () (, the elementary
flux-quantum), a high output current (1) (in the logical sense) appears if both
the two inputs to the gate are the same, while if one but not both inputs are
high (1), a low output current (0) results. It clearly exhibits the XNOR gate
behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group
We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled
Driving current through single organic molecules
We investigate electronic transport through two types of conjugated
molecules. Mechanically controlled break-junctions are used to couple thiol
endgroups of single molecules to two gold electrodes. Current-voltage
characteristics (IVs) of the metal-molecule-metal system are observed. These
IVs reproduce the spatial symmetry of the molecules with respect to the
direction of current flow. We hereby unambigously detect an intrinsic property
of the molecule, and are able to distinguish the influence of both the molecule
and the contact to the metal electrodes on the transport properties of the
compound system.Comment: 4 pages, 5 figure
The SND proteins constitute an alternative targeting route to the endoplasmic reticulum.
In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments(1). Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway(2) or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40)(3,4) and homologous yeast guided entry of tail-anchored proteins (GET)(5,6) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay(7,8). We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae(9,10), and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible
Ab-initio study of model guanine assemblies: The role of pi-pi coupling and band transport
Several assemblies of guanine molecules are investigated by means of
first-principle calculations. Such structures include stacked and
hydrogen-bonded dimers, as well as vertical columns and planar ribbons,
respectively, obtained by periodically replicating the dimers. Our results are
in good agreement with experimental data for isolated molecules, isolated
dimers, and periodic ribbons. For stacked dimers and columns, the stability is
affected by the relative charge distribution of the pi orbitals in adjacent
guanine molecules. pi-pi coupling in some stacked columns induces dispersive
energy bands, while no dispersion is identified in the planar ribbons along the
connections of hydrogen bonds. The implications for different materials
comprised of guanine aggregates are discussed. The bandstructure of dispersive
configurations may justify a contribution of band transport (Bloch type) in the
conduction mechanism of deoxyguanosine fibres, while in DNA-like configurations
band transport should be negligible.Comment: 21 pages, 6 figures, 3 tables, to be published in Phys. Rev.
Kirchhoff's Rule for Quantum Wires
In this article we formulate and discuss one particle quantum scattering
theory on an arbitrary finite graph with open ends and where we define the
Hamiltonian to be (minus) the Laplace operator with general boundary conditions
at the vertices. This results in a scattering theory with channels. The
corresponding on-shell S-matrix formed by the reflection and transmission
amplitudes for incoming plane waves of energy is explicitly given in
terms of the boundary conditions and the lengths of the internal lines. It is
shown to be unitary, which may be viewed as the quantum version of Kirchhoff's
law. We exhibit covariance and symmetry properties. It is symmetric if the
boundary conditions are real. Also there is a duality transformation on the set
of boundary conditions and the lengths of the internal lines such that the low
energy behaviour of one theory gives the high energy behaviour of the
transformed theory. Finally we provide a composition rule by which the on-shell
S-matrix of a graph is factorizable in terms of the S-matrices of its
subgraphs. All proofs only use known facts from the theory of self-adjoint
extensions, standard linear algebra, complex function theory and elementary
arguments from the theory of Hermitean symplectic forms.Comment: 40 page
Lipid Profile and Serum Characteristics of the Blind Subterranean Mole Rat, Spalax
to underground life resulted in structural and molecular-genetic differences comparing to above-ground mammals. These differences include higher myocardial maximal oxygen consumption, increased lung diffusion capacity, increased blood vessels density, and unique expression patterns of cancer and angiogenesis related genes such as heparanase, vascular endothelial growth factor, and P53. revealed special features in this mammal. pursue underground, dietary components, and evolutionary genetic adaptations. Unfolding the genetic basis of these differences will probably result in unique treatments for a variety of human diseases such as dyslipedemias, inflammation and cancer
Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction
Here we present the calculations of incoherent current flowing through the
two-site molecular device as well as the DNA-based junction within the
rate-equation approach. Few interesting phenomena are discussed in detail.
Structural asymmetry of two-site molecule results in rectification effect,
which can be neutralized by asymmetric voltage drop at the molecule-metal
contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC)
DNA molecule reveal the coupling- and temperature-independent saturation effect
of the current at high voltages, where for short chains we establish the
inverse square distance dependence. Besides, we document the shift of the
conductance peak in the direction to higher voltages due to the temperature
decrease.Comment: 12 pages, 6 figure
The self in prejudice
Abstract: The self as a psychological construct, and the self in relation to the other has been discussed in psychological and sociological literature for decades, but not much attention has been given to the psychological development of the self in relation to the social construction of prejudice. The primary aim of this article is to explore the self in prejudice and thus the psychological processes involved in the development of self within the social context. Consequently, the aim is to explore the self in the construction and expression of prejudice from both a social and psychological approach, and to explain selfhood influences at the individual, group and community levels. I use the conceptual framework of Kohut’s self psychology as a lens to present the development of the self and thus the idea of the development of the self in relation to the other. In such exploration of self in prejudice, I present some of my ideas which include prejudice as an outcome of self-definition in the context of the other, as well as linking self in prejudice and group dynamics to attachment theory and the notion of “selfgroup’ in terms of overidentification with the in-group. While the social and the psychological in terms of the development of the self cannot be separated, I have therefore attempted to merge at some point the two bodies of thought in relation to the self in prejudice
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
- …