research

A mesoscopic ring as a XNOR gate: An exact result

Abstract

We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux ϕ\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of ϕ\phi (=ϕ0/2=\phi_0/2) (ϕ0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019