We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled