54 research outputs found

    CHEMICAL COMPOSITION OF LEGUMINOUS TREE FOLIAGE AND EFFECT OF POLYETHYLENE GLYCOL ON GAS PRODUCTION AND IN VITRO DIGESTION PARAMETERS

    Get PDF
    The objective was to determine the chemical composition, digestibility and in vitro digestion parameters in ten legume tree foliage using the in vitro gas-production method with and without polyethylene glycol (PEG). The foliages with higher protein content (P<0.001) (167.1 to 180.3 g/kg DM) were A. cochliacantha, L. esculenta, E. cyclocarpum and A. farnesiana; from the total phenols (P<0.001) (365.9 to 680.6 g/kg DM) L. divaricata, H. brasiletto and C. coriaria and condensed tannins (P<0.001) (35.4 to 88.0 g/kg DM) E. cyclocarpum, A. farnesiana, P. dulce, P. acatlense and G. sepium. The in vitro dry matter digestibility was different (P<0.001) among the foliages. The in vitro gas production (IVGP), in vitro organic matter digestibility, metabolizable energy (ME), gas yield (GY24h), short chain fatty acids (SCFA) and microbial mass production (PMM), were different (P<0.0001) among the foliage as a result of the species. The use of PEG increased (P<0.0001) IVGP, ME, GY24h and SCFA in H brasiletto, C. coriaria, L. esculenta and A. cochliacantha, but affect (P<0.0001) the partition factor and the PMM. The nutritional composition and fermentation parameters in vitro between foliages differ by effect of tree and use of PEG. It is concluded that chemical composition in the foliages affect the digestibility and fermentation parameters and use of PEG increased fermentation parameters in the foliages high in secondary compounds

    Analysis of Minor Proteins Present in Breast Milk by Using WGA Lectin

    Get PDF
    Breast milk is a complex and dynamic biological fluid and considered an essential source of nutrition in early life. In its composition, the proteins have a relevant biological activity and are related to the multiple benefits demonstrated when compared with artificial milks derived from cow’s milk. Understanding human milk composition provides an important tool for health care providers toward the management of infant feeding and the establishment of breastfeeding. In this work, a new technique was developed to increase the knowledge of human milk, because many of the components remain unknown. To isolate minor proteins present in breast milk by using WGA lectin, breast milk was centrifuged to remove cells and separate the fat phase from the serum phase. The serum obtained was separated into two groups: control (n = 3; whole serum sample from mature milk) and WGA lectin (n = 3; sample processed with WGA lectin to isolate glycosylated proteins). The samples were analyzed by high-performance liquid chromatography coupled to mass spectrometry (HPLC/MS). A total of 84 different proteins were identified from all of the samples. In the WGA lectin group, 55 different proteins were isolated, 77% of which had biological functions related to the immune response. Of these proteins, there were eight WGA lectin group exclusives, and two had not previously been described in breast milk (polyubiquitin-B and POTE ankyrin domain family member F). Isolation by WGA lectin is a useful technique to detect minor proteins in breast milk and to identify proteins that could not be observed in whole serum

    A Metallurgical Inspection Method to Assess the Damage in Performance-Limiting Nb3Sn Accelerator Magnet Coils

    Full text link
    The design and production of Nb3Sn-based dipole and quadrupole magnets is critical for the realization of the High-Luminosity Large Hadron Collider (HL-LHC) at the European Organization for Nuclear Research (CERN). Nb3Sn superconducting coils are aimed at enhancing the bending and focusing strengths of accelerator magnets for HL-LHC and beyond. Due to the brittle nature of Nb3Sn, the coil fabrication steps are very challenging and require very careful QA/QC. Flaws in the Nb3Sn filaments may lead to quenches, and eventually, performance limitation below nominal during magnet testing. A novel inspection method, including advanced non-destructive and destructive techniques, was developed to explore the root-causes of quenches occurring in performance-limiting coils. The most relevant results obtained for MQXF coils through this innovative inspection method are presented. This approach allows for precise assessment of the physical events associated to the quenches experienced b y magnet coils, mainly occurring under the form of damaged strands with transversely broken sub-elements. Coil-slice preparation, micro-optical observations of transverse and longitudinal cross-sections, and a deep etching technique of copper will be illustrated in the present work, with a focus on the results achieved for a CERN coil from a non-conforming quadrupole magnet prototype, and two coils fabricated in the US, in the framework of the Accelerator Upgrade Project (AUP) collaboration, from two different non-conforming quadrupole magnets, respectively. The results obtained through the proposed inspection method will be illustrated.Comment: Applied Superconductivity Conference 202

    Density and integral use evaluation of three leguminous trees in silvopastoral systems in the tropic of Guerrero, Mexico

    Get PDF
    In the Tropic of Guerrero Mexico the distribution, the density and uses of trees Pithecellobium dulce Roxb Benth, Gliricidia sepium (Jacq) Steud, Haematoxilum brasiletto Karst were studied and its foliage was added to the diets of kids and productive response and apparent digestibility was measured. The livestock farmers have six complementary uses (firewood, poles, shade, medicinal, human consumption and artisanal). The species were identified in live fences and scattered in paddocks with densities of 4.87 trees per 100 linear meters and 1.79 trees ha-1; P. dulce was the largest size and identified from 250 to 1332 masl. The ashes (P&lt;0.0001) and detergent fibre (P&lt;0.01) of P. dulce (T1) had higher apparent digestibility. The feed conversion and daily weight gain of the kids were different due to the effect of foliage trees. The rectal temperature was only affected (P&lt;0.0001) by the time of evaluation. The ruminal pH of kids was affected by time evaluation (P&lt;0.0001) and the treatments (P&lt;0.0003). It is concluded that the density of trees is low and could be of impact on soil fertility and the contribution of biomass for animal feed; the apparent digestibility of diets and productive response were more efficient in the animals fed with P. dulce (T1

    New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition

    Get PDF
    Promising and highly novel catalysts based on ruthenium (Ru) supported on reduced graphene oxide were synthesized, characterized and tested for COx-free hydrogen generation by catalytic ammonia decomposition. Metal loading and amount of a pre-reducing agent clearly affect the catalytic properties of the final catalysts. A Ru loading higher than 2.5 wt% resulted in Ru particles of size higher than 5 nm, which were agglomerated, thus decreasing the amount of the most active sites (B5 type-sites) and therefore the ammonia conversion. Additionally, a graphene oxide (GO) hydrothermal pre-reduction with 2-chloroethylamine hydrochloride, led materials with a more ordered structure which is associated with a good electronic conductivity and, higher basicity. Optimal catalytic activity is achieved using a reducing agent/GO ratio of 5/3 (wt/wt) and a Ru loading of 2.5 wt%. Thus, 2.5Ru/10C-rGO catalyst resulted in excellent hydrogen (H2) production from ammonia decomposition, with an ammonia conversion close to 96% and hydrogen production rate of 9.1 mmolH2 gcat−1 min−1 at 400 °C. Reduced graphene oxide proved to be a suitable support in the development of nanosized Ru catalysts being the optimal one highly active in COx-free hydrogen generation during more than 60 h of reaction, providing virtuous stability.Catalizadores prometedores y altamente novedosos basados ​​en rutenio (Ru) soportado en óxido de grafeno reducido fueron sintetizados, caracterizados y probados para CO x-generación de hidrógeno libre por descomposición catalítica de amoníaco. La carga de metal y la cantidad de un agente prerreductor afectan claramente las propiedades catalíticas de los catalizadores finales. Una carga de Ru superior al 2,5% en peso resultó en partículas de Ru de tamaño superior a 5 nm, que se aglomeraron, disminuyendo así la cantidad de los sitios más activos (sitios tipo B5) y por lo tanto la conversión de amoníaco. Además, una prerreducción hidrotermal de óxido de grafeno (GO) con clorhidrato de 2-cloroetilamina, llevó a materiales con una estructura más ordenada que se asocia con una buena conductividad electrónica y una mayor basicidad. La actividad catalítica óptima se logra utilizando una relación de agente reductor/GO de 5/3 (p/p) y una carga de Ru de 2,5 % en peso. Por lo tanto, el catalizador 2.5Ru/10C-rGO resultó en un excelente hidrógeno (H 2) producción a partir de la descomposición del amoníaco, con una conversión de amoníaco cercana al 96% y una tasa de producción de hidrógeno de 9,1 mmolH 2 g cat −1 min −1 a 400 °C. El óxido de grafeno reducido demostró ser un soporte adecuado en el desarrollo de catalizadores de Ru nanométricos siendo el óptimo altamente activo en la generación de hidrógeno libre de CO x durante más de 60 h de reacción, proporcionando una estabilidad virtuosa

    Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19

    Get PDF
    Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19

    A global point prevalence survey of antimicrobial use in neonatal intensive care units: The no-more-antibiotics and resistance (NO-MAS-R) study

    Get PDF
    Background: Global assessment of antimicrobial agents prescribed to infants in the neonatal intensive care unit (NICU) may inform antimicrobial stewardship efforts. Methods: We conducted a one-day global point prevalence study of all antimicrobials provided to NICU infants. Demographic, clinical, and microbiologic data were obtained including NICU level, census, birth weight, gestational/chronologic age, diagnoses, antimicrobial therapy (reason for use; length of therapy), antimicrobial stewardship program (ASP), and 30-day in-hospital mortality. Findings: On July 1, 2019, 26 of infants (580/2,265; range, 0�100; median gestational age, 33 weeks; median birth weight, 1800 g) in 84 NICUs (51, high-income; 33, low-to-middle income) from 29 countries (14, high-income; 15, low-to-middle income) in five continents received �1 antimicrobial agent (92, antibacterial; 19, antifungal; 4, antiviral). The most common reasons for antibiotic therapy were �rule-out� sepsis (32) and �culture-negative� sepsis (16) with ampicillin (40), gentamicin (35), amikacin (19), vancomycin (15), and meropenem (9) used most frequently. For definitive treatment of presumed/confirmed infection, vancomycin (26), amikacin (20), and meropenem (16) were the most prescribed agents. Length of therapy for culture-positive and �culture-negative� infections was 12 days (median; IQR, 8�14) and 7 days (median; IQR, 5�10), respectively. Mortality was 6 (42, infection-related). An NICU ASP was associated with lower rate of antibiotic utilization (p = 0·02). Interpretation: Global NICU antibiotic use was frequent and prolonged regardless of culture results. NICU-specific ASPs were associated with lower antibiotic utilization rates, suggesting the need for their implementation worldwide. Funding: Merck & Co.; The Ohio State University College of Medicine Barnes Medical Student Research Scholarship © 2021 The Author

    ACCESSORY FUNCTIONING BREAST TISSUE AS A LARGE MASS IN THE AXILLA

    No full text
    corecore