151 research outputs found

    Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides

    Full text link
    In this work we have developed polymeric materials from epoxidized vegetable oils in order to obtain materials with excellent mechanical properties for use as green matrix composites. Epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and different mixtures of the two oils were used to produce the polymers. Phthalic anhydride (17 mol%) and maleic anhydride (83 mol%) which has a eutectic reaction temperature of 48 °C were used as crosslinking agents while benzyl dimethyl amine (BDMA) and ethylene glycol were used as the catalyst and initiator, respectively. The results showed that samples 100ELO and 80ELO20ESO could be used as a matrix in green composites because they demonstrated good mechanical properties. © 2012 AOCS (outside the USA).This work is part of the project IPT-310000-2010-037,''ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character'' funded by the "Ministerio de Ciencia e Innovacion", with financial aid of 189,540.20 EUR, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies.Samper Madrigal, MD.; Fombuena Borrás, V.; Boronat Vitoria, T.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. Journal of the American Oil Chemists' Society. 89(8):1521-1528. https://doi.org/10.1007/s11746-012-2041-yS15211528898Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Polym Rev C44:231–274Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—a comparative study to PP. Compos Sci Technol 70:1687–1696Raquez JM, Deleglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Prog Polym Sci 35:487–509Charlet K, Jernot JP, Gomina M, Bizet L, Breard J (2010) Mechanical properties of flax fibers and of the derived unidirectional composites. J Compos Mater 44:2887–2896Barreto ACH, Esmeraldo MA, Rosa DS, Fechine PBA, Mazzetto SE (2010) Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polym Compos 31:1928–1937Thakur VK, Singha AS (2010) Physico-chemical and mechanical characterization of natural fibre reinforced polymer composites. Iran Polym J 19:3–16Schmitz WR, Wallace JG (1954) Epoxidation of methyl oleate with hydrogen peroxide. J Am Oil Chem Soc 31:363–365La Scala J, Wool RP (2002) Effect of FA composition on epoxidation kinetics of TAG. J Am Oil Chem Soc 79:373–378de Espinosa LM, Ronda JC, Galia M, Cadiz V (2008) A new enone-containing triglyceride derivative as precursor of thermosets from renewable resources. J Polym Sci Pol Chem 46:6843–6850Gerbase AE, Petzhold CL, Costa APO (2002) Dynamic mechanical and thermal behavior of epoxy resins based on soybean oil. J Am Oil Chem Soc 79:797–802Boquillon N, Fringant C (2000) Polymer networks derived from curing of epoxidised linseed oil: influence of different catalysts and anhydride hardeners. Polymer 41:8603–8613Montserrat S, Flaque C, Calafell M, Andreu G, Malek J (1995) Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269:213–229Zacharuk M, Becker D, Coelho LAF, Pezzin SH (2011) Study of the reaction between polyethylene glycol and epoxy resins using N,N-dimethylbenzylamine as catalyst. Polimeros 21:73–77Lozada Z, Suppes GJ, Tu YC, Hsieh FH (2009) Soy-based polyols from oxirane ring opening by alcoholysis reaction. J Appl Polym Sci 113:2552–256

    The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends

    Full text link
    [EN] In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30 wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6 phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10 °C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility.This research was supported by the Ministry of Economy and Competitiveness-MINECO, Ref: MAT2014-59242-C2-1-R. Authors also thank to "Conselleria d'Educacio, Cultura i Esport"-Generalitat Valenciana, Ref: GV/2014/008 for financial support.Ferri Azor, JM.; García García, D.; Sánchez Nacher, L.; Fenollar Gimeno, OÁ.; Balart Gimeno, RA. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers. 147:60-68. https://doi.org/10.1016/j.carbpol.2016.03.082S606814

    Amino Acid Availability Controls TRB3 Transcription in Liver through the GCN2/eIF2α/ATF4 Pathway

    Get PDF
    In mammals, plasma amino acid concentrations are markedly affected by dietary or pathological conditions. It has been well established that amino acids are involved in the control of gene expression. Up to now, all the information concerning the molecular mechanisms involved in the regulation of gene transcription by amino acid availability has been obtained in cultured cell lines. The present study aims to investigate the mechanisms involved in transcriptional activation of the TRB3 gene following amino acid limitation in mice liver. The results show that TRB3 is up-regulated in the liver of mice fed a leucine-deficient diet and that this induction is quickly reversible. Using transient transfection and chromatin immunoprecipitation approaches in hepatoma cells, we report the characterization of a functional Amino Acid Response Element (AARE) in the TRB3 promoter and the binding of ATF4, ATF2 and C/EBPβ to this AARE sequence. We also provide evidence that only the binding of ATF4 to the AARE plays a crucial role in the amino acid-regulated transcription of TRB3. In mouse liver, we demonstrate that the GCN2/eIF2α/ATF4 pathway is essential for the induction of the TRB3 gene transcription in response to a leucine-deficient diet. Therefore, this work establishes for the first time that the molecular mechanisms involved in the regulation of gene transcription by amino acid availability are functional in mouse liver

    Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemochromatosis (HH) is a genetic disease associated with iron overload, in which individuals homozygous for the mutant C282Y <it>HFE </it>associated allele are at risk for the development of a range of disorders particularly liver disease. Conformational diseases are a class of disorders associated with the expression of misfolded protein. HFE C282Y is a mutant protein that does not fold correctly and consequently is retained in the Endoplasmic Reticulum (ER). In this context, we sought to identify ER stress signals associated with mutant C282Y HFE protein expression, which may have a role in the molecular pathogenesis of HH.</p> <p>Results</p> <p>Vector constructs of Wild type HFE and Mutant C282Y HFE were made and transfected into HEK293 cell lines. We have shown that expression of C282Y HFE protein triggers both an unfolded protein response (UPR), as revealed by the increased GRP78, ATF6 and CHOP expression, and an ER overload response (EOR), as indicated by NF-κB activation. Furthermore, C282Y HFE protein induced apoptotic responses associated with activation of ER stress. Inhibition studies demonstrated that tauroursodeoxycholic acid, an endogenous bile acid, downregulates these events. Finally, we found that the co-existence of both C282Y HFE and Z alpha 1-antitrypsin protein (the protein associated with the liver disease of Z alpha 1-antitrypsin deficiency) expression on ER stress responses acted as potential disease modifiers with respect to each other.</p> <p>Conclusion</p> <p>Our novel observations suggest that both the ER overload response (EOR) and the unfolded protein response (UPR) are activated by mutant C282Y HFE protein.</p

    Combined expression of caveolin-1 and an activated AKT/mTOR pathway predicts reduced disease-free survival in clinically confined renal cell carcinoma

    Get PDF
    We previously reported that tumour-associated caveolin-1 is a potential biomarker in renal cell carcinoma (RCC), whose overexpression predicts metastasis following surgical resection for clinically confined disease. Much attention has recently focused on the AKT/mTOR pathway in a number of malignancies, including RCC. Since caveolin-1 and the AKT/mTOR signalling cascade are independently shown to be important regulators of tumour angiogenesis, we hypothesised that caveolin-1 interacts with the AKT/mTOR pathway to drive disease progression and metastasis in RCC. The aims of this study were to determine (i) the expression status of the activated AKT/mTOR pathway components (phosphorylated forms) in RCC and (ii) their prognostic value when combined with caveolin-1. Immunohistochemistry for caveolin-1, pAKT, pmTOR, pS6 and p4E-BP1 was performed on tissue microarrays from 174 clinically confined RCCs. Significantly decreased mean disease-free survival was observed when caveolin-1 was coexpressed with either pAKT (2.95 vs 6.14 years), pmTOR (3.17 vs 6.28 years), pS6 (1.45 vs 6.62 years) or p4E-BP1 (2.07 vs 6.09 years) than when neither or any one single biomarker was expressed alone. On multivariate analysis, the covariate of ‘caveolin-1/AKT' (neither alone were influential covariates) was a significant influential indicator of poor disease-free survival with a hazard ratio of 2.13 (95% CI: 1.15–3.92), higher than that for vascular invasion. Tumours that coexpressed caveolin-1 and activated mTOR components were more likely to be larger, higher grade and to show vascular invasion. Our results provide the first clinical evidence that caveolin-1 cooperates with an activated AKT/mTOR pathway in cancer and may play an important role in disease progression. We conclude that evaluation of the ‘caveolin-1/AKT/mTOR axis' in primary kidney tumours will identify subsets of RCC patients who require greater postoperative surveillance and more intensive treatment

    CD98 Increases Renal Epithelial Cell Proliferation by Activating MAPKs

    Get PDF
    CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways

    Rapamycin Blocks Production of KSHV/HHV8: Insights into the Anti-Tumor Activity of an Immunosuppressant Drug

    Get PDF
    Infection with Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) often results in the development of fatal tumors in immunocompromised patients. Studies of renal transplant recipients show that use of the immunosuppressant drug rapamycin, an mTOR inhibitor, both prevents and can induce the regression of Kaposi's sarcoma (KS), an opportunistic tumor that arises within a subset of this infected population. In light of rapamycin's marked anti-KS activity, we tested whether the drug might directly inhibit the KSHV life cycle. We focused on the molecular switch that triggers this predominantly latent virus to enter the lytic (productive) replication phase, since earlier work links this transition to viral persistence and tumorigenesis.In latently infected human B cell lines, we found that rapamycin inhibited entry of the virus into the lytic replication cycle, marked by a loss of expression of the lytic switch protein, replication and transcription activator (RTA). To test for viral-specific effects of rapamycin, we focused our studies on a B cell line with resistance to rapamycin-mediated growth inhibition. Using this line, we found that the drug had minimal effect on cell cycle profiles, cellular proliferation, or the expression of other cellular or latent viral proteins, indicating that the RTA suppression was not a result of global cellular dysregulation. Finally, treatment with rapamycin blocked the production of progeny virions.These results indicate that mTOR plays a role in the regulation of RTA expression and, therefore, KSHV production, providing a potential molecular explanation for the marked clinical success of rapamycin in the treatment and prevention of post-transplant Kaposi's sarcoma. The striking inhibition of rapamycin on KSHV lytic replication, thus, helps explain the apparent paradox of an immunosuppressant drug suppressing the pathogenesis of an opportunistic viral infection
    corecore