141 research outputs found

    New methods for the estimation of Takagi-Sugeno model based extended Kalman filter and its applications to optimal control for nonlinear systems

    Get PDF
    This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use

    Uso de los foros de discusión en un programa de enseñanza destinado a adultos

    Get PDF
    Hacer más factibles, reales y duraderos los procesos de aprendizaje para la población adulta trabajadora y públicos en general, teniendo en cuenta la importancia creciente de la formación profesional en ambientes altamente exigentes y dinámicos, constituye en la actualidad un imperativo impostergable para todos los profesionales de una u otra especialidad relacionados con la tarea de enseñar y que exige, además de manejar profundamente las características psicológicas de la etapa de desarrollo evolutiva de que se trate en función de potenciar el desarrollo de todos, el dominio o preparación del docente en las novedosas tecnologías de la información así como su implementación exitosa en pos de un aprendizaje no sólo eficaz, sino también colaborativo, donde se aprovechen e intervengan las fuerzas de todos los miembros del grupo. Por las razones expuestas anteriormente implementamos el uso de una plataforma interactiva para el desarrollo de un curso dirigido a los docentes de nuestro centro denominado Aprendizaje en adultos estructurado en 5 temas que se presentan al estudiante mediante guías de estudio, incluyendo también un ejercicio de evaluación final, y que presenta determinadas particularidades partiendo de nuestras condiciones concretas, las cuáles se expresan de manera amplia en el artículo presentado

    A Computational Tool for Three-Point Hitch Geometry Optimisation Based on Weight-Transfer Minimisation

    Get PDF
    The weight-transfer effect, consisting of the change in dynamic load distribution between the front and the rear tractor axles, is one of the most impairing phenomena for the performance, comfort, and safety of agricultural operations. Excessive weight transfer from the front to the rear tractor axle can occur during operation or manoeuvring of implements connected to the tractor through the three-point hitch (TPH). In this respect, an optimal design of the TPH can ensure better dynamic load distribution and ultimately improve operational performance, comfort, and safety. In this study, a computational tool (the Optimiser) for the determination of a TPH geometry which minimises the weight-transfer effect is developed. The Optimiser is based on a constrained minimisation algorithm. The objective function to be minimized is related to the tractor front-to-rear axle load transfer during a simulated reference manoeuvre performed with a reference implement on a reference soil. Simulations are based on a dynamic model of the tractor-TPH-implement aggregate. The geometry determined by the Optimiser complies with the ISO-730 Standard functional requirements and other design requirements. The interaction between the soil and the implement during the simulated reference manoeuvre was successfully validated against experimental data. The simulation results show that the adopted reference manoeuvre is effective in triggering the weight-transfer effect, with the front axle load exhibiting a peak-to-peak value of 27.1 kN during the manoeuvre. A benchmark test was conducted starting from the geometry of a commercially available TPH; the test showed that the Optimiser, after 36 iterations, was able to find an optimised TPH geometry which allows to reduce the weight-transfer effect by 14.9%

    Estimación de modelos borrosos y su aplicación al control óptimo

    Get PDF
    El objetivo de la presentación es dar a conocer los últimos trabajos del Grupo de Investigación sobre últimos trabajos del Grupo de Investigación sobre Control Borroso. • Obtención de modelos precisos de sistemas no lineales basados en sistemas borrosos – Mamdani – Takagi-Sugeno – Linealización • Generalización del método propuesto por T-S • Identificación iterativa basada en el Filtro de Kalman • Sistemas de control basados en el modelo TS obtenido – LQ

    New Optimal Approach for the Identification of Takagi-Sugeno Fuzzy Model

    Full text link
    A novel optimal method is developed to improve the identification and estimation of Takagi-Sugeno (TS) fuzzy model. The idea comes from the fact that the main drawback of T-S model is that it can not be applied when the membership functions are overlapped by pairs. This limits the application of the T-S model because this type of membership function has been widely used in the stability and controller design of fuzzy systems. It is also very popular in industrial control applications. The method presented here can be considered as a generalized version of T-S fuzzy model with optimized performance in approximating nonlinear functions. Various examples are chosen to show the high function approximation accuracy and fast convergence obtained by applying the proposed method in approximating nonlinear systems locally and globally in comparison with the original T-S model

    An Optimal T-S Model for the Estimation and Identification of Nonlinear Functions

    Get PDF
    A novel optimal method is developed to improve the identification and estimation of Takagi-Sugeno (TS) fuzzy model. The idea comes from the fact that the main drawback of T-S model is that it can not be applied when the membership functions are overlapped by pairs. This limits the application of the T-S model because this type of membership function has been widely used in the stability and controller design of fuzzy systems. It is also very popular in industrial control applications. The method presented here can be considered as a generalized version of T-S fuzzy model with optimized performance in approximating nonlinear functions. Various examples are chosen to show the high function approximation accuracy and fast convergence obtained by applying the proposed method in approximating nonlinear systems locally and globally in comparison with the original T-S model

    A new approach to fuzzy estimation of Takagi-Sugeno model and its applications to optimal control for nonlinear systems

    Get PDF
    An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm

    Self-Tuning PID controller for autonomous car tracking in urban traffic

    Get PDF
    In this paper an on line self-tuned PID controller is proposed for the control of a car whose goal is to follow another one, at distances and speeds typical in urban traffic. The bestknown tuning mechanism is perhaps the MIT rule, due to its ease of implementation. However, as it is well known, this method does not guarantee the stability of the system, providing good results only for constant or slowly varying reference signals and in the absence of noise, which are unrealistic conditions. When the reference input varies with an appreciable rate or in presence of noise, eventually it could result in system instability. In this paper an alternative method is proposed that significantly improves the robustness of the system for varying inputs or in the presence of noise, as demonstrated by simulation

    Improvement of Takagi-Sugeno Fuzzy Model for the Estimation of Nonlinear Functions

    Get PDF
    Two new and efficient approaches are presented to improve the local and global estimation of the Takagi-Sugeno (T-S) fuzzy model. The main aim is to obtain high function approximation accuracy and fast convergence. The main problem is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. The approaches developed here can be considered as generalized versions of T-S method with optimized performance. The first uses the minimum norm approach to search for an exact optimum solution at the expense of increasing complexity and computational cost. The second is a simple and less computational method, based on weighting of parameters. Illustrative examples are chosen to evaluate the potential, simplicity and remarkable performance of the proposed methods and the high accuracy obtained in comparison with the original T-S model

    Fuzzy Optimal Control for Double Inverted Pendulum

    Get PDF
    In this paper a fuzzy optimal control for stabilizing an upright position a double inverted pendulum (DIP) is developed and compared. Modeling is based on Euler-Lagrange equations. This results in a complicated nonlinear fast reaction, unstable multivariable system. Firstly, the mathematical models of double pendulum system are presented. The weight variable fuzzy input is gained by combining the fuzzy control theory with the optimal control theory. Simulation results show that the controller, which the upper pendulum is considered as main control variable, has high accuracy, quick convergence speed and higher precision
    • …
    corecore