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Abstract— A novel optimal method is developed to improve the identification and estimation of Takagi-Sugeno (T-
S) fuzzy model. The idea comes from the fact that the main drawback of T-S model is that it can not be applied when 
the membership functions are overlapped by pairs. This limits the application of the T-S model because this type of 
membership function has been widely used in the stability and controller design of fuzzy systems. It is also very 
popular in industrial control applications. The method presented here can be considered as a generalized version of 
T-S fuzzy model with optimized performance in approximating nonlinear functions. Various examples are chosen to 
show the high function approximation accuracy and fast convergence obtained by applying the proposed method in 
approximating nonlinear systems locally and globally in comparison with the original T-S model.  

 
 
Index Terms—Nonlinear systems, Fuzzy systems, Takagi-Sugeno fuzzy model, Universal approximators, 

optimization  
 
1   Introduction 
Nonlinear control systems based on the Takagi–
Sugeno (T–S) fuzzy model [28], [29] have attracted 
lots of attention during the last twenty years (e.g., see 
[1], [2], [6], [9], [10], [11], [14], [16], [18],  [19], [20], 
[21], [24], [25], [31] and [37]. It provides a powerful 
solution for development of function approximation, 
systematic techniques to stability analysis and 
controller design of fuzzy control systems in view of 
fruitful conventional control theory and techniques. 

This model is formed by using a set of fuzzy rules 
to represent a nonlinear system as a set of local affine 
models which are connected by fuzzy membership 
functions [3] and [4]. 

This fuzzy modelling method presents an 
alternative technique to represent complex nonlinear 
systems [7], [30], [35] and [38], and reduces the 
number of rules in modelling higher order nonlinear 
systems [9] and [29].  

T–S fuzzy models are proved to be universal 
function approximators as they are able to 
approximate any smooth nonlinear functions to any 
degree of accuracy in any convex compact region [7], 
[12], [19], [30], [35] and [38]. This result provides a 
theoretical foundation for applying T–S fuzzy models 

to represent complex nonlinear systems 
approximately.  

Great attention has been paid to the identification 
of T–S fuzzy models and several results have been 
obtained [5], [12], [23], [32] and [36]. They are based 
upon two kinds of approaches, one is to linearize the 
original nonlinear system in various operating points 
when the model of the system is known, and the other 
is based on the input-output data collected from the 
original nonlinear system when its model is unknown. 

The authors in [5] use a fuzzy clustering method to 
identify T–S fuzzy models, including identification of 
the number of fuzzy rules and parameters of fuzzy 
membership functions, and identification of 
parameters of local linear models by using a least 
squares method [27] and [33]. The goal is to minimize 
the error between T–S fuzzy models and the 
corresponding original nonlinear systems.  

The authors in [12] suggest a method to identify T–
S fuzzy models. Their method aims at improving the 
local and global approximation of T-S model. 
However, this complicates the approximation in order 
to obtain both targets. It has been shown that 
constrained and regularized identification methods 
may improve interpretability of constituent local 
models as local linearizations, and locally weighted 
least squares method may explicitly address the trade-
off between the local and global accuracy of T–S 
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fuzzy models. 
In [26] a new method of interval fuzzy model 

identification was developed. The method combines a 
fuzzy identification methodology with some ideas 
from linear programming theory. The idea is then 
extended to modelling the optimal lower and upper 
bound functions that define the band which contains 
all the measurement values. This results in lower and 
upper fuzzy models or a fuzzy model with a set of 
lower and upper parameters. This approach can also 
be used to compress information in the case of large 
amount of data and in the case of robust system 
identification. The method can be efficiently used in 
the case of the approximation of the nonlinear 
functions family. This present paper is inspired by the 
idea that by using a proper evaluation of triangular 
shape membership functions it is possible to emulate 
the simplicial  high-level canonical piecewise linear 
approximation technique [13] by following a fuzzy 
logic approach. The paper focuses on the development 
of an interval L∞-norm -norm function approximation 
methodology problem using the LP technique and the 
TS fuzzy logic approach. This results in lower and 
upper fuzzy models or a fuzzy model with lower and 
upper parameters. 

    In [22] a constructive method to synthesize a 
MISO TS fuzzy logic system imposing the requested 
derivative constraints on the function representing its 
behaviour is presented. The values of that function 
and its partial derivatives on the grid points of the 
input space permit to define a suitable interpolator of 
the function itself.  

In [15], a new approach to fuzzy modeling using 
the relevance vector learning mechanism based on a 
kernel-based Bayesian estimation is introduced. The 
main concern is to find the best structure of the TS 
fuzzy model for modeling nonlinear dynamic systems 
with measurement error. The number of rules and the 
parameter values of membership functions can be 
found as optimizing the marginal likelihood of the 
RVM in the proposed FIS. Because the RVM is not 
necessary to satisfy Mercer’s condition, selection of 
kernel function is beyond the limit of the positive 
definite continuous symmetric function of SVM. The 
relaxed condition of kernel function can satisfy 
various types of membership functions in fuzzy 
model. The RVM which was compared with support 
vector learning mechanism in examples had the small 
model capacity and described good generalization. 
Simulated results showed the effectiveness of the 
proposed FIS for modeling of nonlinear dynamic 
systems with noise. 

In [29], the authors develop an interesting method 
to identify nonlinear systems using input-output data. 
They divide the identification process in three steps; 
premise variables, membership functions and 
consequent parameters. With respect to membership 
functions, they apply nonlinear programming 
technique using the complex method for the 
minimization of the performance index.  

In spite of such important works, prior to 1989, 
most FLS’s were still designed with preselected 
structures and the adjustment of membership 
functions (MF’s) was carried out by trial and error. 
Since 1989, a number of techniques for structure 
and/or parameter identification from I/O data have 
been suggested in the literature. In [27] Sugeno and 
Tanaka developed a successive method for identifying 
T-S model. They combined the least square method, 
the complex method and an unbiased criterion; while 
parameter adjustment was adjustment rules and a 
weighted recursive least squares algorithm. In [33] the 
authors presented a method for generating fuzzy rules 
by learning from examples. 

In 1991, Wang and Mendel developed a method for 
generating fuzzy rules by learning from examples [34] 
and proved that a fuzzy inference system is a 
universal approximator by the Stone–Weierstrass 
theorem [32]. 

In 1995, Wang proposed a new state-space 
analytical approach to fuzzy identification of 
nonlinear dynamical systems [33]. In 1996, Langari 
and Wang proposed achieving structure identification 
of a T-S fuzzy model by using a combination of fuzzy 
c-means clustering technique and a fuzzy 
discretization technique [17]. 

In [23], Nozaki et al. presented a heuristic method 
for generating T-S fuzzy rules from numerical data, 
and then converted the consequent parts of T-S fuzzy 
rules into linguistic representation. 

As we will be demonstrated in this article, the T-S 
model can not be applied when the membership 
functions are overlapped by pairs. This limits the 
usage of the model because as it was shown in the last 
two decades that the major part of the results obtained 
in the field of stability and controller synthesis are 
based on this type of membership functions. 
Moreover, the method presented here is characterized 
by the high accuracy obtained in approximating 
nonlinear systems locally and globally in comparison 
with the original T-S model.  

The rest of the paper is organized as follows. 
Section 2 presents T-S identification Method. Section 
3 introduces restrictions of T-S identification Method. 
Section 4 demonstrates the proposed approach to 
improve and generalize the T-S model. Section 5 
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entails various examples to demonstrate the validity 
of the proposed approach. These examples show that 
the proposed approach are less conservative than 
those based on (standard) T-S model and illustrate the 
utility of the proposed approach in comparison with 
T-S model. 

 
 

2   Identification of T-S Model 
An interesting method of identification is presented in 
[29]. The idea is based on estimating the nonlinear 
system parameters minimizing a quadratic 
performance index. The method is based on the 
identification of functions of the following form: 
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The continuous fuzzy dynamic model, proposed by 

Takagi and Sugeno is described by fuzzy IF-THEN 
rules where the consequent part is a linear input-
output relation. 

The main feature of this model is to express the 
local dynamics of each fuzzy implication by an affine 
model. 

The final fuzzy system is resulted from blending of 
the affine system models. 

 Each IF-THEN rule Ri1 …in, for an nth order system 
can be rewritten as follows: 
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Where the fuzzy estimation of the output is: 
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Where ( )111 ,,2,11 riM i L= are fuzzy sets for x1, 

( )222 ,,2,12 riM i L= are fuzzy sets for x2 and 
( )nn

i
n riM n ,,2,1 L= are fuzzy sets for xn. x(t) is the 

state vector. Therefore the whole fuzzy system 
consists of r1.r2.... rn rules.  

Let m be a set of input/output system 
samples{ }knkkk yxxx ,,,, 21 K . The parameters of the 
fuzzy system can be calculated by minimizing the 
following quadratic performance index: 
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If X is a matrix of complete rank, the parameters of 
the fuzzy system are obtained as follows: 
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2 Restrictions of T-S identification 
Method 
The method proposed in [29] arises serious problems 
as it can not be applied in the most common case 
where the membership functions are those shown in 
fig. 1. 
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Fig. 1.  Membership functions 
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In this case, it can easily be demonstrated that the 
matrix X is not of complete rank and therefore XX t  
is not invertible, which makes the method of T-S 
invalid. This result can be easily proven as follows:  
 
Supposing: 
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applying T-S method, each row of the matrix X is of 
the form: 
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The rank of X in this case is 3.  In other words, the 
columns of X are linearly dependent which in turn 
makes impossible the use of the identification method 
proposed in [29]. 
Analyzing another example of two variables: 
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Each row of the matrix X is of the form: 
 

[

]kkkkkkkkkkk

kkkkkkkkkkk

kkkkkkkkkkk

xxx

xxx

xxX

2
2212

1
22122212

2
2112

1
21122112

2
2211

1
2211

2211
2

2111
1

21112111

...

µµµµµµµµ

µµµµµµµµ

µµµµµµµµ=

 

 
It can be noticed that the columns 1, 3, 4 and 6 have 

the same form as in the previous example multiplied 
by a constant 11

kµ  and therefore they are linearly 
dependent as well. The same thing happens with the 
columns 6, 9, 10 and 12, etc. In fact, the rank of the 
matrix in this case is 8. 

The solution proposed in [29] avoids the occurrence 
of this situation. In order to identify a function in the 
interval [ ]21, ii xx  using T-S method, certain 
intermediate points are chosen of the form:  
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And they use membership functions which verify:  
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Which impedes that the domains of these functions 
being overlapped and therefore it can be observed 
that, except for some isolated points, 
 

1)()( 21 ≠+ iiii xx µµ  
 

And thus, in general, the matrix X will be of full rank 
and the method is applicable. 

This solution can be clearly seen in [29] where the 
authors find the optimum membership functions 
minimizing the performance index and reducing the 
problem to a nonlinear programming one. For this 
reason, they use the well-known complex method for 
the minimization. This can obviously be observed in 
the illustrative examples selected by the authors in 
[29] where all the identified memberships are non 
overlapping ones. 

 
 

4   Proposed Approach 
The restriction of T-S identification method for the 

case presented in the previous section does not mean 
the non-existence of solutions. The problem comes 
from the fact that the solution should fulfil: 
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But as it was shown above, the columns of the 

matrix X are linearly dependent and consequently 
XtX  is not an invertible matrix, therefore it is 

impossible to calculate P through: 
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Nevertheless, as the rows of tX  are linearly 

dependent, the independent term in equation (5) will 
have the same dependence among its rows and 
thereupon the rank of the system matrix will be the 
same as the rank of the extended matrix by the 
independent term. 
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And so the system has solution. In other words, the 
system is a compatible indeterminate one, that is, if P 
is a solution of (5) and K is a Kernel of  XX t . 
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Then βKPP +=* will also be a solution, where β  
is any real vector whose dimension is same to that of 
the Kernel. Therefore, the problem is not the lack of a 
solution rather the existence of infinite solutions and 
the key idea is the ability to find one of them. Several 
proposals can be made to select a solution. In our 
case, we propose a solution with lower norm.  
 
 
4.1 Reduced Matrix Approach-Optimum 
Solution 

The approach implies the search for an exact and 
optimum solution at the expense of increasing the 
degree of complexity and computational cost. The 
problem is stated as follows: 

 

  minimize  2P                                           (9)  
 
      subject to 
 

      minimize  2XPYJ −=  
 
which can be re-described as follows: 
 

       minimize  2
P  

 
       subject to   
 
       0=−=∇ XPtXYtXJ  
 
As already stated, the system of restriction 

equations is a compatible undetermined one, and 
therefore, there are linearly dependent restrictions 
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upon others. What is proposed is to eliminate the 
linear restrictions until obtaining a system with all its 
restrictions being linearly independent. We obtain a 
reduced system of equations linearly independent 
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Then, Lagrange theorem can be applied, defining a 

lagrangian function 
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This can also be represented in matrix form: 
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And the solution will be:  
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5   Examples 
In the following examples, we will compare this 

method with the one proposed by T-S. Different non-
linear functions will be proposed and the fuzzy 
models will be obtained assigning an interval [ ]21, ii xx  
for each variable ix . In this interval, two fuzzy sets are 
defined whose membership functions are: 
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However, as demonstrated above, these 

membership functions can not be used directly in the 
method of T-S, as the resulting matrix X would not be 
complete rank. In order to compare these methods, we 

use a factor 10 ≤≤α  , which determines two points 
within the interval, this means: 
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And so, we define two fuzzy sets whose 

membership functions are: 
 

⎪
⎩

⎪
⎨

⎧

≤≤
−

−
≤≤

=

⎪
⎩

⎪
⎨

⎧

≤≤

≤≤
−

−
=

2
*
1*

12

*
1

*
11

2

2
*
2

*
21*

21

*
2

1

0
)(

0
)(

ii
ii

ii

ii

i

ii

ii
ii

ii

i

xxx
xx
xx

xxx
x

xxx

xxx
xx
xx

x

µ

µ

 

 
These membership funcyions are those used with 

the direct method of T-S. As a measure of error for 
comparing these methods, the maximum of the 
absolute values of the errors is used, the same method 
applied in by T-S in [29]. 

 
Example 1 
Consider the following simple nonlinear system: 
 

2xx =&  
 
It is aimed to estimate this system: 
 

[ ]1,02 ∈= xxy  
 
Let us suppose that we define in this interval two 

fuzzy sets with their corresponding membership 
functions as follows: 
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The objective is to calculate the corresponding 

fuzzy model in an optimum form: 
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In order to identify the nonlinear function, we take 

20 points uniformly distributed in the interval [0, 1]. 
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Applying the reduced matrix method, the product 
XX t  is calculated as follows: 

 
    6.8421    1.5789    3.1579    1.5789 
    1.5789    0.6333    1.5789    0.9456 
    3.1579    1.5789    6.8421    5.2632 
    1.5789    0.9456    5.2632    4.3175 
 
Its rank is 3 and can be reduced to rX  
 
    6.8421    1.5789    3.1579    1.5789 
    1.5789    0.6333    1.5789    0.9456 
    3.1579    1.5789    6.8421    5.2632 
 
The resultant P vector of the parameters in the 

consequent part is: 
 
    0.0000 
   -0.3333 
    0.3333 
    0.6667 
 
This means that the resultant fuzzy rules are:  
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The result in this case is obtained with an error of 

7.0031e-016, which is practically zero. In the method 
of T-S, let us suppose that 7.0=α . The fuzzy model 
is: 
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The identification error is 2.01e-002, which is 

higher than the one obtained in the proposed method. 
Increasing 8.0=α , the error is reduced to 1.60e-02, 
i.e., the identification is improved.  When 9.0=α , 
the error becomes 8.1e-003, where the identification 
is again improved. The same occurs for 95.0=α  
where the error is reduced to 4.4e-003. 

In other words, as the factor α  is approaching unity 
the identification is improved, but can not reach the 
optimum which precisely occurs when 1=α . Since at 
this value, the matrix X is not of complete rank and 
therefore the matrix XX t  is not invertible. 

Even when α  is approaching unity, the condition 
number of the matrix X starts increasing which 
indicates that XX t is  approaching the singularity and 
therefore its inverse is no longer numerically reliable. 

For instance, when 999.0=α , the condition number 
of X is 5.2523e+004 which shows clearly a non 
reliable result. 

 
Example 2 
Consider the following nonlinear system 
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Applying the reduced matrix method, the resultant 

fuzzy rules are: 
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The identification model is obtained with an error 

of 7.1497e-015. Applying the method presented by T-
S, with 9.0=α for 1x  and 2x , the resultant fuzzy 
model is: 

 

21

2
22

2
11

22
21

1
22

2
11

21
21

2
22

1
11

12
21

1
22

1
11

11

7962.44527.41964.5

5301.54527.14814.0

2235.3547306843.4

692845473002870

xxythen
MisxandMisx:ifS

xxythen
MisxandMisx:ifS

xx.-ythen
MisxandMisx:ifS

x.x..-ythen
MisxandMisx:ifS

−+=

−+−=

−=

−+=

                                 

 
The resultant error is 0.0515, but the condition 

number for the matrix X is 3.4381e+015 which is very 
close to singularity. 

 
Example 3 
Let us analyze the following non linear system 
 

[ ] [ ]1,01,0 21
3
2

3
1 ∈∈+= xxxxy  

 
Applying the reduced matrix method, the fuzzy 

model is: 
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21

2
22

2
11

22
21

1
22

2
11

21
21

2
22

1
11

12
21

1
22

1
11

11

3688.03090.276250

1312.13090.22998.1

8015.0951010300

698509510.00016.0

xx.ythen
MisxandMisx:ifS

xxythen
MisxandMisx:ifS

xx.ythen
MisxandMisx:ifS

x.xythen
MisxandMisx:ifS

++−=

−+−=

++=

−+−=

 

 
The identification error is 2.14e-02. But in the TS 

method, using 8.0=α , which is the value that after 
several attempts provides better results, we get: 

 

21

2
22

2
11

22
21

1
22

2
11

21
21

2
22

1
11

12
21

1
22

1
11

11

1465.09274.11880.0-

3607.19274.19482.0

4273.00.59104578.0

0541.15910000850

xxythen
MisxandMisx:ifS

xxythen
MisxandMisx:ifS

xxythen
MisxandMisx:ifS

xx..ythen
MisxandMisx:ifS

++=

−+−=

++=

−+−=

 

 
The identification error is 3.07e-02. In this case, 

with 9.0=α the results becomes worse because the 
condition number for the matrix X is 3.4381e +015 
which is the same as that in the previous case, where 
the matrix X does not depend upon the function rather 
on the interval. 

 
6   Conclusions 

A new optimization method has been developed to 
improve the local and global approximation and 
modelling capability of Takagi-Sugeno (T-S) 
identification methodology model. The main problem 
encountered is that T-S model can not be applied 
when the membership functions are overlapped by 
pairs. This restricts the application of the T-S model 
because this type of membership function has been 
widely used during the last two decades in fuzzy 
control applications. An optimal solution has been 
proposed to reduce the error between the original 
system and the identified one. The results obtained 
have shown tangible improvement compared to the 
solution offered by T-S. Several illustrative examples 
have been presented to evaluate the validity and 
performance of the proposed method and the high 
accuracy obtained in approximating nonlinear systems 
locally and globally in comparison with the original 

T-S model. The results obtained by applying the 
proposed method have demonstrated better results in 
comparison with the original T-S. 
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