12 research outputs found

    Inflation and Dark Energy from spectroscopy at z > 2

    Get PDF

    The dial-a-ride problem with private fleet and common carrier

    No full text
    Dial-a-ride problems aim to design the least-costly door-to-door vehicle routes for transporting individual users, subject to several service constraints like time windows, service and route durations, and ride-time. In some cases, providers cannot meet the demand and may outsource some requests. In this paper, we introduce, model, and solve the dial-a-ride problem with private fleet and common carrier (DARP-PFCC) that makes it possible to transfer the demand unmet by the provider to mobility-on-demand services and taxis. All outsourced vehicles are assumed to be available at any instant of the day and have unlimited capacity, enabling to satisfy all user requests, particularly during peak times. We implement a branch-andcut (B&C) algorithm based on an exact method from the literature to solve the DARP-PFCC, and we develop a near parameter-free parallel metaheuristic to handle large instances. Our metaheuristic combines the Biased Random-key Genetic Algorithm (BRKGA) and the Q-learning (QL) method into the same framework (BRKGA-QL), in which an agent helps to use feedback information to dynamically choose the parameters of BRKGA during the search to select the most appropriate configuration to solve a specific problem instance. Both algorithms are flexible enough to solve the classical DARP, and extensive computational experiments demonstrate the efficiency of our methods. For the DARP instances, the B&C proved optimality for 41 of the 42 instances tested in a reasonable computational time, and the BRKGA-QL found the best-known solution for these instances within a matter of seconds. These results indicate that our metaheuristic performs equally well than state-of-the-art DARP algorithms. In the DARP-PFCC experiments on a set of 504 small-size instances, B&C proved optimality for 497 instances, while BRKGA-QL found 452 optimal solutions, totalling 90.94% of the instances solved to optimality. Finally, we present the results for a real case study for the DARP-PFCC, where BRKGA-QL solved very large problem instances containing up to 713 transportation requests. We also derive some managerial analyses to assess the effects of vehicle capacity reduction, for example due to the COVID-19 pandemic, on shared transportation. The results point to the benefits of combining the private fleet and common carriers in dial-a-ride problems, both for the provider and for the users

    The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions

    Get PDF
    Coffee rust is a leaf disease caused by the fungus, Hemileia vastatrix. Coffee rust epidemics, with intensities higher than previously observed, have affected a number of countries including: Colombia, from 2008 to 2011; Central America and Mexico, in 2012-13; and Peru and Ecuador in 2013. There are many contributing factors to the onset of these epidemics e.g. the state of the economy, crop management decisions and the prevailing weather, and many resulting impacts e.g. on production, on farmers' and labourers' income and livelihood, and on food security. Production has been considerably reduced in Colombia (by 31 % on average during the epidemic years compared with 2007) and Central America (by 16 % in 2013 compared with 2011-12 and by 10 % in 2013-14 compared with 2012-13). These reductions have had direct impacts on the livelihoods of thousands of smallholders and harvesters. For these populations, particularly in Central America, coffee is often the only source of income used to buy food and supplies for the cultivation of basic grains. As a result, the coffee rust epidemic has had indirect impacts on food security. The main drivers of these epidemics are economic and meteorological. All the intense epidemics experienced during the last 37 years in Central America and Colombia were concurrent with low coffee profitability periods due to coffee price declines, as was the case in the 2012-13 Central American epidemic, or due to increases in input costs, as in the 2008-11 Colombian epidemics. Low profitability led to suboptimal coffee management, which resulted in increased plant vulnerability to pests and diseases. A common factor in the recent Colombian and Central American epidemics was a reduction in the diurnal thermal amplitude, with higher minimum/lower maximum temperatures (+0.1 °C/-0.5 °C on average during 2008-2011 compared to a low coffee rust incidence period, 1991-1994, in Chinchiná, Colombia; +0.9 °C/-1.2 °C on average in 2012 compared with prevailing climate, in 1224 farms from Guatemala). This likely decreased the latency period of the disease. These epidemics should be considered as a warning for the future, as they were enhanced by weather conditions consistent with climate change. Appropriate actions need to be taken in the near future to address this issue including: the development and establishment of resistant coffee cultivars; the creation of early warning systems; the design of crop management systems adapted to climate change and to pest and disease threats; and socio-economic solutions such as training and organisational strengthening. (Résumé d'auteur

    Inflation and Dark Energy from Spectroscopy at z>2z > 2

    Get PDF
    The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of Inflation and much more recently, at z<1z < 1, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. The large cosmological volume at 2<z<52 < z < 5, together with the ability to efficiently target high-zz galaxies with known techniques, enables large gains in the study of Inflation and Dark Energy. A future spectroscopic survey can test the Gaussianity of the initial conditions up to a factor of ~50 better than our current bounds, crossing the crucial theoretical threshold of σ(fNLlocal)\sigma(f_{NL}^{\rm local}) of order unity that separates single field and multi-field models. Simultaneously, it can measure the fraction of Dark Energy at the percent level up to z=5z = 5, thus serving as an unprecedented test of the standard model and opening up a tremendous discovery space

    Inflation and Dark Energy from Spectroscopy at z>2z > 2

    No full text
    The expansion of the Universe is understood to have accelerated during two epochs: in its very first moments during a period of Inflation and much more recently, at z<1z < 1, when Dark Energy is hypothesized to drive cosmic acceleration. The undiscovered mechanisms behind these two epochs represent some of the most important open problems in fundamental physics. The large cosmological volume at 2<z<52 < z < 5, together with the ability to efficiently target high-zz galaxies with known techniques, enables large gains in the study of Inflation and Dark Energy. A future spectroscopic survey can test the Gaussianity of the initial conditions up to a factor of ~50 better than our current bounds, crossing the crucial theoretical threshold of σ(fNLlocal)\sigma(f_{NL}^{\rm local}) of order unity that separates single field and multi-field models. Simultaneously, it can measure the fraction of Dark Energy at the percent level up to z=5z = 5, thus serving as an unprecedented test of the standard model and opening up a tremendous discovery space
    corecore