21 research outputs found

    Nanofils de GaN/AlN : nucléation, polarité et hétérostructures quantiques

    Get PDF
    Using specific conditions, GaN can be epitaxially grown on a large variety of substrates as a nanowire (NW) array. This geometry allows the subsequent growth of wire-like heterostructures likely free of extended defects, which makes them promising for increasing device controllability and performance. First, my PhD work has been devoted to the understanding of self-organized nucleation of GaN NWs on silicon substrates. For this purpose, a deep characterization of the growth mechanism of the AlN buffer deposited prior to NW nucleation has been done, emphasizing an unexpected large reactivity of Al with the substrate. The requirement of the N polarity to nucleate GaN NWs has been evidenced, although the possible existence of NWs hosting a Ga polar core has been observed as well. In these NWs, an inversion domain boundary is present and has been demonstrated to be optically active, having a photoluminescence signature at 3.45 eV. Next, GaN/AlN wire heterostructures have been grown for structural and optical characterization. It has been shown that by changing the wire diameter, different growth mode for the heterostructure could be reached.At last, thanks to the cylindrical geometry of NWs, the measurement of diffusion length for charge carriers in GaN and AlN NWs have been performed.Usant de certaines conditions, la croissance épitaxiale de GaN sur un large panel de substrats donne lieu à une assemblée de nanofils. Cette géométrie filaire peut permettre la croissance d'hétérostructures libres de tous défauts cristallins étendus, ce qui les rendent attractives pour créer des dispositifs de hautes performances. En premier lieu, mon travail de thèse a visé à clarifier le mécanisme de nucléation auto-organisé des nanofils de GaN sur substrat de silicium. Dans ce but, une étude approfondie de la couche tampon d'AlN, déposée préalablement à la nucléation des nanofils, a été réalisée, mettant en évidence une inattendue forte réactivité de l'Al avec le substrat. La nécessité de la polarité azote pour la croissance des nanofils de GaN a été mise en lumière, bien que des nanofils contenant dans leur cœur un domaine de polarité Ga ont également été observés. Dans ces nanofils, une paroi d'inversion de domaine est présente et a été démontrée être optiquement active, exhibant une photoluminescence à 3.45 eV. Ensuite des hétérostuctures filaires GaN/AlN ont été synthétisée pour des caractérisations structurales et optiques. Il a été montré que le mode de croissance de l'hétérostructure peut être changé en fonction du diamètre du nanofil. En dernier lieu, en prenant avantage de la géométrie cylindrique des nanofils, des mesures de diffusion de porteurs de charge ont été réalisées dans des nanofils de GaN et d'AlN

    Cathodoluminescence of stacking fault bound excitons for local probing of the exciton diffusion length in single GaN nanowires

    Get PDF
    We perform correlated studies of individual GaN nanowires in scanning electron microscopy combined to low temperature cathodoluminescence, microphotoluminescence, and scanning transmission electron microscopy. We show that some nanowires exhibit well localized regions emitting light at the energy of a stacking fault bound exciton (3.42 eV) and are able to observe the presence of a single stacking fault in these regions. Precise measurements of the cathodoluminescence signal in the vicinity of the stacking fault give access to the exciton diffusion length near this location

    Top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation

    Get PDF
    We demonstrate the top-down fabrication of ordered arrays of GaN nanowires by selective area sublimation of pre-patterned GaN(0001) layers grown by hydride vapor phase epitaxy on Al2_{2}O3_{3}. Arrays with nanowire diameters and spacings ranging from 50 to 90 nm and 0.1 to 0.7 μ\mum, respectively, are simultaneously produced under identical conditions. The sublimation process, carried out under high vacuum conditions, is analyzed \emph{in situ} by reflection high-energy electron diffraction and line-of-sight quadrupole mass spectromety. During the sublimation process, the GaN(0001) surface vanishes, giving way to the formation of semi-polar {11ˉ03}\lbrace1\bar{1}03\rbrace facets which decompose congruently following an Arrhenius temperature dependence with an activation energy of (3.54±0.073.54 \pm 0.07) eV and an exponential prefactor of 1.58×10311.58\times10^{31} atoms cm2^{-2} s1^{-1}. The analysis of the samples by low-temperature cathodoluminescence spectroscopy reveals that, in contrast to dry etching, the sublimation process does not introduce nonradiative recombination centers at the nanowire sidewalls. This technique is suitable for the top-down fabrication of a variety of ordered nanostructures, and could possibly be extended to other material systems with similar crystallographic properties such as ZnO.Comment: This is the accepted manuscript version of an article that appeared in Nanoscale Advances. The CC BY-NC 3.0 license applies, see http://creativecommons.org/licenses/by-nc/3.0

    Density control of GaN nanowires at the wafer scale using self-assembled SiNx_x patches on sputtered TiN(111)

    Full text link
    The self-assembly of heteroepitaxial GaN nanowires using either molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) mostly results in wafer-scale ensembles with ultrahigh (>10>10 μ\mum2^{-2}) or ultralow (<1<1 μ\mum2^{-2}) densities, respectively. A simple means to tune the density of well-developed nanowire ensembles between these two extremes is generally lacking. Here, we examine the self-assembly of SiNx_x patches on TiN(111) substrates which are eventually acting as seeds for the growth of GaN nanowires. We first found that if prepared by reactive sputtering, the TiN surface is characterized by \{100\} facets for which the GaN incubation time is extremely long. Fast GaN nucleation is only obtained after deposition of a sub-monolayer of SiNx_x atoms prior to the GaN growth. By varying the amount of pre-deposited SiNx_x, the GaN nanowire density could be tuned by three orders of magnitude with excellent uniformity over the entire wafer, bridging the density regimes conventionally attainable by direct self-assembly with MBE or MOVPE. The analysis of the nanowire morphology agrees with a nucleation of the GaN nanowires on nanometric SiNx_x patches. The photoluminescence analysis of single freestanding GaN nanowires reveals a band edge luminescence dominated by excitonic transitions that are broad and blue shifted compared to bulk GaN, an effect that is related to the small nanowire diameter and to the presence of a thick native oxide. The approach developed here can be principally used for tuning the density of most III-V semiconductors nucleus grown on inert surfaces like 2D materials

    Unraveling the strain state of GaN down to single nanowires

    Get PDF
    GaN nanowires (NWs) grown by molecular beam epitaxy are usually assumed free of strain in spite of different individual luminescence signatures. To ascertain this usual assumption, the c/a of a GaNNW assembly has been characterized using both X-ray diffraction and Raman spectroscopy, with scaling the measurement down to the single NW. Free-standing single NWs have been observed free of strain defined as [c/a-(c/a)o]/(c/a)o within the experimental accuracy mounting to 1.25 × 10-4. However, in the general case, a significant portion of the NWs is coalesced, generating an average tensile strain that can be partly released by detaching the NWs from their substrates. It is concluded that at the scale of the single NW, the free surface and the residual doping do not generate a significant strain and only coalescence does

    A route for the top-down fabrication of ordered ultrathin GaN nanowires

    Full text link
    Ultrathin GaN nanowires (NWs) are attractive to maximize surface effects and as building block in high-frequency transistors. Here, we introduce a facile route for the top-down fabrication of ordered arrays of GaN NWs with aspect ratios exceeding 1010 and diameters below 2020\,nm. Highly uniform thin GaN NWs are first obtained by using electron beam lithography to pattern a Ni/SiNx_x hard mask, followed by dry etching and wet etching in hot KOH. The SiNx_x is found to work as an etch stop during wet etching in hot KOH. Arrays with NW diameters down to (33±5)(33 \pm5)\,nm can be achieved with a yield exceeding 99.9%99.9\,\%. Further reduction of the NW diameter down to 55\,nm is obtained by applying digital etching which consists in plasma oxidation followed by wet etching in hot KOH. The NW radial etching depth is tuned by varying the RF power during plasma oxidation. NW breaking or bundling is observed for diameters below 20\approx 20\,nm, an effect that is associated to capillary forces acting on the NWs during sample drying in air. This effect can be principally mitigated using critical point dryers. Interestingly, this mechanical instability of the NWs is found to occur at much smaller aspect ratios than what is predicted for models dealing with macroscopic elastic rods. Explicit calculations of buckling states show an improved agreement when considering an inclined water surface, as can be expected if water assembles into droplets. The proposed fabrication route can be principally applied to any GaN/SiNx_{x} nanostructures and allows regrowth after removal of the SiNx_{x} mask

    Self-Assembly of Well-Separated AlN Nanowires Directly on Sputtered Metallic TiN Films

    Get PDF
    Herein, the self-assembled formation of AlN nanowires (NWs) by molecular beam epitaxy on sputtered TiN films on sapphire is demonstrated. This choice of substrate allows growth at an exceptionally high temperature of 1180 °C. In contrast to previous reports, the NWs are well separated and do not suffer from pronounced coalescence. This achievement is explained by sufficient Al adatom diffusion on the substrate and the NW sidewalls. The high crystalline quality of the NWs is evidenced by the observation of near-band-edge emission in the cathodoluminescence spectrum. The key factor for the low NW coalescence is the TiN film, which spectroscopic ellipsometry and Raman spectroscopy indicate to be stoichiometric. Its metallic nature will be beneficial for optoelectronic devices using these NWs as the basis for (Al,Ga)N/AlN heterostructures emitting in the deep ultraviolet spectral range

    GaN/AlN nanowires : nucleation, polarity and quantum heterostructures

    No full text
    Usant de certaines conditions, la croissance épitaxiale de GaN sur un large panel de substrats donne lieu à une assemblée de nanofils. Cette géométrie filaire peut permettre la croissance d'hétérostructures libres de tous défauts cristallins étendus, ce qui les rendent attractives pour créer des dispositifs de hautes performances. En premier lieu, mon travail de thèse a visé à clarifier le mécanisme de nucléation auto-organisé des nanofils de GaN sur substrat de silicium. Dans ce but, une étude approfondie de la couche tampon d'AlN, déposée préalablement à la nucléation des nanofils, a été réalisée, mettant en évidence une inattendue forte réactivité de l'Al avec le substrat. La nécessité de la polarité azote pour la croissance des nanofils de GaN a été mise en lumière, bien que des nanofils contenant dans leur cœur un domaine de polarité Ga ont également été observés. Dans ces nanofils, une paroi d'inversion de domaine est présente et a été démontrée être optiquement active, exhibant une photoluminescence à 3.45 eV. Ensuite des hétérostuctures filaires GaN/AlN ont été synthétisée pour des caractérisations structurales et optiques. Il a été montré que le mode de croissance de l'hétérostructure peut être changé en fonction du diamètre du nanofil. En dernier lieu, en prenant avantage de la géométrie cylindrique des nanofils, des mesures de diffusion de porteurs de charge ont été réalisées dans des nanofils de GaN et d'AlN.Using specific conditions, GaN can be epitaxially grown on a large variety of substrates as a nanowire (NW) array. This geometry allows the subsequent growth of wire-like heterostructures likely free of extended defects, which makes them promising for increasing device controllability and performance. First, my PhD work has been devoted to the understanding of self-organized nucleation of GaN NWs on silicon substrates. For this purpose, a deep characterization of the growth mechanism of the AlN buffer deposited prior to NW nucleation has been done, emphasizing an unexpected large reactivity of Al with the substrate. The requirement of the N polarity to nucleate GaN NWs has been evidenced, although the possible existence of NWs hosting a Ga polar core has been observed as well. In these NWs, an inversion domain boundary is present and has been demonstrated to be optically active, having a photoluminescence signature at 3.45 eV. Next, GaN/AlN wire heterostructures have been grown for structural and optical characterization. It has been shown that by changing the wire diameter, different growth mode for the heterostructure could be reached.At last, thanks to the cylindrical geometry of NWs, the measurement of diffusion length for charge carriers in GaN and AlN NWs have been performed
    corecore