762 research outputs found

    An assessment of the tea bag index method as a proxy for organic matter decomposition in intertidal environments

    Get PDF
    This work was supported by the Natural Environment Research Council (grant NE/R010846/1) Carbon in Storage in Intertidal Environments (C-SIDE) project.Intertidal wetlands capture and store carbon (C) for long periods of time, helping to reduce the concentration of CO2 in the atmosphere. Yet the processes which govern the decomposition and subsequent long‐term storage of organic matter (OM) and C in these habitats remains poorly understood. The Tea Bag Index (TBI) uses a standardized OM (green and Rooibos tea) and has the potential to shed light on OM decomposition across habitats, including saltmarshes. Here, we apply the TBI method at two saltmarshes within the same estuary with the aim of (i) reducing the influence of climatic variables and (ii) determining the role of the environment, including the soil characteristics, in the decomposition of OM. We extended the standard (3 months) incubation period over a full year in order to investigate the longer‐term decomposition processes at each site. The initial results partially support previous studies that the early stages of decomposition (leaching of the water‐soluble fraction) is governed by climatic conditions, but may be further enhanced by tidal flushing in saltmarshes. By extending the incubation period, we observed the initiation of mid‐stage OM decomposition (Cellulose degradation) upon which the soil characteristics appear to be the dominant control. These results highlight the importance of long‐term TBI incubations to understand early‐stage OM decomposition. The relationship between tea mass (OM) loss and C loss in these intertidal environments is not straightforward and we would caution the use of the TBI as a direct universal proxy for soil C degradation in such intertidal wetlands.Publisher PDFPeer reviewe

    Size matters : analyses of benthic foraminiferal assemblages across differing size fractions

    Get PDF
    This project was supported by the BBSRC/NERC (ref. BB/M026620/01).Benthic foraminiferal assemblages are the object of numerous studies spanning from (palaeo)environmental reconstructions to biomonitoring; however, the establishment of a procedure to standardize these studies remains a recent achievement. Not all studies based on benthic foraminiferal assemblages adopt the same methodology, which potentially hinders the use and comparison of samples prepared prior to the creation of a standard protocol or, indeed, without the knowledge of it. One of the main issues is to understand and possibly quantify the influence of different size fractions on foraminiferal biodiversity and richness. In this study, we analyzed benthic foraminiferal assemblages from the west coast of Shetland (Scotland), which were deliberately prepared without following the standard procedure, and were instead picked from the size fractions 63–150 ÎŒm and >150 ÎŒm. Based on assemblage composition, biodiversity indices and multivariate analyses of the data, we assessed the quality and precision of the environmental information that could be extrapolated from these samples. We found that general biodiversity trends remain the same regardless of size fraction, whereas the assemblage internal composition is significantly different between size fractions, with the small fraction retaining a greater degree of environmental sensitivity. We recommend compiling the two sample sets to produce a more holistic and detailed picture of environmental change and generate high-resolution environmental reconstructions. Nevertheless, we conclude that benthic foraminiferal assemblages picked from the large size fraction (>150 ÎŒm) still provide useful information on prevailing environmental conditions and remain useful for an overview of environmental change in these coastal settings.Publisher PDFPeer reviewe

    Centennial-scale evolution of Dansgaard-Oeschger events in the northeast Atlantic Ocean between 39.5 and 56.5 ka B.P

    Get PDF
    There is much uncertainty surrounding the mechanisms that forced the abrupt climate fluctuations found in many palaeoclimate records during Marine Isotope Stage (MIS)-3. One of the processes thought to be involved in these events is the Atlantic Meridional Overturning Circulation (MOC), which exhibited large changes in its dominant mode throughout the last glacial period. Giant piston core MD95-2006 from the northeast Atlantic Ocean records a suite of palaeoceanographic proxies related to the activity of both surface and deep water masses through a period of MIS-3 when abrupt climate fluctuations were extremely pronounced. A two-stage progression of surface water warming during interstadial warm events is proposed, with initial warming related to the northward advection of a thin warm surface layer within the North Atlantic Current, which only extended into deeper surface layers as the interstadial progressed. Benthic foraminifera isotope data also show millennial-scale oscillations but of a different structure to the abrupt surface water changes. These changes are argued to partly be related to the influence of low-salinity deepwater brines. The influence of deepwater brines over the site of MD95-2006 reached a maximum at times of rapid warming of surface waters. This observation supports the suggestion that brine formation may have helped to destabilize the accumulation of warm, saline surface waters at low latitudes, helping to force the MOC into a warm mode of operation. The contribution of deepwater brines relative to other mechanisms proposed to alter the state of the MOC needs to be examined further in future studies

    The impact of ocean acidification on the functional morphology of foraminifera

    Get PDF
    This work was supported by the NERC UK Ocean Acidification Research Programme grant NE/H017445/1. WENA acknowledges NERC support (NE/G018502/1). DMP received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference HR09011) and contributing institutions.Culturing experiments were performed on sediment samples from the Ythan Estuary, N. E. Scotland, to assess the impacts of ocean acidification on test surface ornamentation in the benthic foraminifer Haynesina germanica. Specimens were cultured for 36 weeks at either 380, 750 or 1000 ppm atmospheric CO2. Analysis of the test surface using SEM imaging reveals sensitivity of functionally important ornamentation associated with feeding to changing seawater CO2 levels. Specimens incubated at high CO2 levels displayed evidence of shell dissolution, a significant reduction and deformation of ornamentation. It is clear that these calcifying organisms are likely to be vulnerable to ocean acidification. A reduction in functionally important ornamentation could lead to a reduction in feeding efficiency with consequent impacts on this organism’s survival and fitness.Publisher PDFPeer reviewe

    Implications of 36Cl exposure ages from Skye, northwest Scotland for the timing of ice stream deglaciation and deglacial ice dynamics

    Get PDF
    The French national AMS facility ASTER (CEREGE, Aix en Provence) is supported by the INSU/CNRS, the ANR through the "Projets thĂ©matiques d’excellence" program for the "Equipements d’excellence" ASTER-CEREGE action, IRD and CEA. The authors would like to thank Shasta Marrero for helpful and informative discussion on the CRONUScalc online calculator. DS was supported by a SAGES studentship and fieldwork by funds from the QRA and BSG.Geochronological constraints on the deglaciation of former marine based ice streams provide information on the rates and modes by which marine based ice sheets have responded to external forcing factors such as climate change. This paper presents new 36Cl cosmic ray exposure dating from boulders located on two moraines (Glen Brittle and Loch Scavaig) in southern Skye, northwest Scotland. Ages from the Glen Brittle moraines constrain deglaciation of a major marine terminating ice stream, the Barra-Donegal Ice Stream that drained the former British-Irish Ice Sheet, depending on choice of production method and scaling model this occurred 19.9 ± 1.5–17.6 ± 1.3 ka ago. We compare this timing of deglaciation to existing geochronological data and changes in a variety of potential forcing factors constrained through proxy records and numerical models to determine what deglaciation age is most consistent with existing evidence. Another small section of moraine, the Scavaig moraine, is traced offshore through multibeam swath-bathymetry and interpreted as delimiting a later stillstand/readvance stage following ice stream deglaciation. Additional cosmic ray exposure dating from the onshore portion of this moraine indicate that it was deposited 16.3 ± 1.3–15.2 ± 0.9 ka ago. When calculated using the most up-to-date scaling scheme this time of deposition is, within uncertainty, the same as the timing of a widely identified readvance, the Wester Ross Readvance, observed elsewhere in northwest Scotland. This extends the area over which this readvance has potentially occurred, reinforcing the view that it was climatically forced.PostprintPeer reviewe

    Quantifying Marine Sedimentary Carbon: A New Spatial Analysis Approach Using Seafloor Acoustics, Imagery, and Ground-Truthing Data in Scotland

    Get PDF
    Marine sediments are important repositories of organic matter, effectively burying organic carbon (OC) over geological timescales thus providing a climate regulation service. However, the spatial distribution of this marine sedimentary OC store is not well constrained. In this study we leverage a high resolution multibeam echosounder (MBES) survey taken at Loch Creran, a model fjordic site on the west coast of Scotland, to develop a new methodology for predicting the distribution of OC in surface sediments. Using an integrated approach, we use MBES survey, video imagery and ground-truthing data to produce a high-resolution (2 × 2 m) map of surficial carbon and calculate a 10 cm stock. We find that the backscatter survey reliably uncovers a heterogeneous seabed and that OC correlates strongly with the MBES backscatter signal as a function of sediment composition. We estimate that there are approximately 12,346 ± 2,677 t of OC held within the top 10 cm of mixed sediments across the MBES survey area (7.96 km2; 60% of the total area), upscaled to 20,577 ± 4,462 t of OC across Loch Creran (13.27 km2). Normalised by area, we find that fine sediments with small fractions of sand and gravel hold more OC than homogenous fine sediments. This initial work proposes a novel methodological approach to using high resolution MBES surveys to improve the spatial mapping of sedimentary carbon (C) and identification of C hotspots, enabling consideration of this resource in sedimentary carbon accounting, seabed management and climate mitigation strategies

    Organic carbon stocks of Great British saltmarshes

    Get PDF
    Coastal wetlands, such as saltmarshes, are globally widespread and highly effective at capturing and storing ‘blue carbon’ and have the potential to regulate climate over varying timescales. Yet only Australia and the United States of America have national inventories of organic carbon held within saltmarsh habitats, hindering the development of policies and management strategies to protect and preserve these organic carbon stores. Here we couple a new observational dataset with 4,797 samples from 26 saltmarshes across Great Britain to spatially model organic carbon stored in the soil and the above and belowground biomass of Great British saltmarshes. Using average values derived from the 26 marshes, we deliver first-order estimates of organic carbon stocks across Great Britain’s 448 saltmarshes (451.66 km2). The saltmarshes of Great Britain contain 5.20 ± 0.65 Mt of organic carbon, 93% of which is in the soil. On average, the saltmarshes store 11.55 ± 1.56 kg C m-2 with values ranging between 2.24 kg C m-2 and 40.51 kg C m-2 depending on interlinked factors such as geomorphology, organic carbon source, sediment type (mud vs sand), sediment supply, and relative sea level history. These findings affirm that saltmarshes represent the largest intertidal blue carbon store in Great Britain, yet remain an unaccounted for component of the United Kingdom’s natural carbon stores

    A North Atlantic tephrostratigraphical framework for 130-60 ka b2k:new tephra discoveries, marine-based correlations, and future challenges

    Get PDF
    Building chronological frameworks for proxy sequences spanning 130–60 ka b2k is plagued by difficulties and uncertainties. Recent developments in the North Atlantic region, however, affirm the potential offered by tephrochronology and specifically the search for cryptotephra. Here we review the potential offered by tephrostratigraphy for sequences spanning 130–60 ka b2k. We combine newly identified cryptotephra deposits from the NGRIP ice-core and a marine core from the Iceland Basin with previously published data from the ice and marine realms to construct the first tephrostratigraphical framework for this time-interval. Forty-three tephra or cryptotephra deposits are incorporated into this framework; twenty three tephra deposits are found in the Greenland ice-cores, including nine new NGRIP tephras, and twenty separate deposits are preserved in various North Atlantic marine sequences. Major, minor and trace element results are presented for the new NGRIP horizons together with age estimates based on their position within the ice-core record. Basaltic tephras of Icelandic origin dominate the framework with only eight tephras of rhyolitic composition found. New results from marine core MD99-2253 also illustrate some of the complexities and challenges of assessing the depositional integrity of marine cryptotephra deposits. Tephra-based correlations in the marine environment provide independent tie-points for this time-interval and highlight the potential of widening the application of tephrochronology. Further investigations, however, are required, that combine robust geochemical fingerprinting and a rigorous assessment of tephra depositional processes, in order to trace coeval events between the two depositional realms

    Efficient use of water for irrigation in the upper midwest

    Get PDF
    The objectives of this multidisciplinary interinstitutional regional study on the efficient use of water for irrigation in the upper Midwest were: (1) to determine parameters needed for existing or improved models of crop response; (2) to relate yield response to costs and revenues by assessing the water demand for irrigation; and (3) to study the demand for irrigation, present and projected, and its availability as related to public allocation decisions. From this series of studies it was concluded that: (1) There are many areas of the Midwest with sufficient groundwater and surface water resources to support the development of irrigation. (2) Soil moisture models indicate that only moderate yield response to irrigation can be expected on high moisture soils; on lighter soils and claypan soils, yield response is significant, even in regions with relatively high precipitation. (3) Irrigation and drainage on claypan soils can dramatically increase corn yields. (4) It appears economically worthwhile for the individual farmer operating on moderate soils or on claypan soils to evaluate capital investments in irrigation along with other capital investments. (5) Increases in yields and persistence of alfalfa due to irrigation appear to be insignificant when compared to conventional management practices; further research is needed. A potential, however, appears to exist for improving adaptation of a1 fa1 fa varieties to soil water deficits.U.S. Geological SurveyU.S. Department of the InteriorOpe
    • 

    corecore