49 research outputs found
Informing the design of a national screening and treatment programme for chronic viral hepatitis in primary care: qualitative study of at-risk immigrant communities and healthcare professionals
n Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise statedThis paper presents independent research funded by the National Institute
for Health Research (NIHR) under the Programme Grants for Applied
Research programme (RP-PG-1209-10038).
Serum kidney injury molecule 1 and β2-microglobulin perform as well as larger biomarker panels for prediction of rapid decline in renal function in type 2 diabetes
Aims/hypothesis: As part of the Surrogate Markers for Micro- and Macrovascular Hard Endpoints for Innovative Diabetes Tools (SUMMIT) programme we previously reported that large panels of biomarkers derived from three analytical platforms maximised prediction of progression of renal decline in type 2 diabetes. Here, we hypothesised that smaller (n ≤ 5), platform-specific combinations of biomarkers selected from these larger panels might achieve similar prediction performance when tested in three additional type 2 diabetes cohorts. Methods: We used 657 serum samples, held under differing storage conditions, from the Scania Diabetes Registry (SDR) and Genetics of Diabetes Audit and Research Tayside (GoDARTS), and a further 183 nested case–control sample set from the Collaborative Atorvastatin in Diabetes Study (CARDS). We analysed 42 biomarkers measured on the SDR and GoDARTS samples by a variety of methods including standard ELISA, multiplexed ELISA (Luminex) and mass spectrometry. The subset of 21 Luminex biomarkers was also measured on the CARDS samples. We used the event definition of loss of >20% of baseline eGFR during follow-up from a baseline eGFR of 30–75 ml min−1 [1.73 m]−2. A total of 403 individuals experienced an event during a median follow-up of 7 years. We used discrete-time logistic regression models with tenfold cross-validation to assess association of biomarker panels with loss of kidney function. Results: Twelve biomarkers showed significant association with eGFR decline adjusted for covariates in one or more of the sample sets when evaluated singly. Kidney injury molecule 1 (KIM-1) and β2-microglobulin (B2M) showed the most consistent effects, with standardised odds ratios for progression of at least 1.4 (p < 0.0003) in all cohorts. A combination of B2M and KIM-1 added to clinical covariates, including baseline eGFR and albuminuria, modestly improved prediction, increasing the area under the curve in the SDR, Go-DARTS and CARDS by 0.079, 0.073 and 0.239, respectively. Neither the inclusion of additional Luminex biomarkers on top of B2M and KIM-1 nor a sparse mass spectrometry panel, nor the larger multiplatform panels previously identified, consistently improved prediction further across all validation sets. Conclusions/interpretation: Serum KIM-1 and B2M independently improve prediction of renal decline from an eGFR of 30–75 ml min−1 [1.73 m]−2 in type 2 diabetes beyond clinical factors and prior eGFR and are robust to varying sample storage conditions. Larger panels of biomarkers did not improve prediction beyond these two biomarkers
Empathy among undergraduate medical students: A multi-centre cross-sectional comparison of students beginning and approaching the end of their course
BACKGROUND: Although a core element in patient care the trajectory of empathy during undergraduate medical education remains unclear. Empathy is generally regarded as comprising an affective capacity: the ability to be sensitive to and concerned for, another and a cognitive capacity: the ability to understand and appreciate the other person's perspective. The authors investigated whether final year undergraduate students recorded lower levels of empathy than their first year counterparts, and whether male and female students differed in this respect. METHODS: Between September 2013 and June 2014 an online questionnaire survey was administered to 15 UK, and 2 international medical schools. Participating schools provided both 5-6 year standard courses and 4 year accelerated graduate entry courses. The survey incorporated the Jefferson Scale of Empathy-Student Version (JSE-S) and Davis's Interpersonal Reactivity Index (IRI), both widely used to measure medical student empathy. Participation was voluntary. Chi squared tests were used to test for differences in biographical characteristics of student groups. Multiple linear regression analyses, in which predictor variables were year of course (first/final); sex; type of course and broad socio-economic group were used to compare empathy scores. RESULTS: Five medical schools (4 in the UK, 1 in New Zealand) achieved average response rates of 55 % (n = 652) among students starting their course and 48 % (n = 487) among final year students. These schools formed the High Response Rate Group. The remaining 12 medical schools recorded lower response rates of 24.0 % and 15.2 % among first and final year students respectively. These schools formed the Lower Response Rate Group. For both male and female students in both groups of schools no significant differences in any empathy scores were found between students starting and approaching the end of their course. Gender was found to significantly predict empathy scores, with females scoring higher than males. CONCLUSIONS: Participant male and female medical students approaching the end of their undergraduate education, did not record lower levels of empathy, compared to those at the beginning of their course. Questions remain concerning the trajectory of empathy after qualification and how best to support it through the pressures of starting out in medical practice
A call for transparent reporting to optimize the predictive value of preclinical research
The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress
In vitro epithelial-to-mesenchymal transformation in human adult epicardial cells is regulated by TGFβ-signaling and WT1
Adult epicardial cells are required for endogenous cardiac repair. After myocardial injury, they are reactivated, undergo epithelial-to-mesenchymal transformation (EMT) and migrate into the injured myocardium where they generate various cell types, including coronary smooth muscle cells and cardiac interstitial fibroblasts, which contribute to cardiac repair. To understand what drives epicardial EMT, we used an in vitro model for human adult epicardial cells. These cells have an epithelium-like morphology and markedly express the cell surface marker vascular cell adhesion marker (VCAM-1). In culture, epicardial cells spontaneously undergo EMT after which the spindle-shaped cells now express endoglin. Both epicardial cells before and after EMT express the epicardial marker, Wilms tumor 1 (WT1). Adding transforming growth factor beta (TGFβ) induces loss of epithelial character and initiates the onset of mesenchymal differentiation in human adult epicardial cells. In this study, we show that TGFβ-induced EMT is dependent on type-1 TGFβ receptor activity and can be inhibited by soluble VCAM-1. We also show that epicardial-specific knockdown of Wilms tumor-1 (WT1) induces the process of EMT in human adult epicardial cells, through transcriptional regulation of platelet-derived growth factor receptor alpha (Pdgfrα), Snai1 and VCAM-1. These data provide new insights into the process of EMT in human adult epicardial cells, which might provide opportunities to develop new strategies for endogenous cell-based cardiac repair
Global Diversity of Sponges (Porifera)
With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future
Genomic reconstruction of the SARS-CoV-2 epidemic in England.
The evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021
Recommended from our members
Ambient air pollution and pulmonary vascular volume on computed tomography: the MESA Air Pollution and Lung cohort studies
Air pollution alters small pulmonary vessels in animal models. We hypothesised that long-term ambient air pollution exposure would be associated with differences in pulmonary vascular volumes in a population-based study. The Multi-Ethnic Study of Atherosclerosis recruited adults in six US cities. Personalised long-term exposures to ambient black carbon, nitrogen dioxide (NO2), oxides of nitrogen (NO x ), particulate matter with a 50% cut-off aerodynamic diameter of <2.5 μm (PM2.5) and ozone were estimated using spatiotemporal models. In 2010-2012, total pulmonary vascular volume was measured as the volume of detectable pulmonary arteries and veins, including vessel walls and luminal blood volume, on noncontrast chest computed tomography (TPVVCT). Peripheral TPVVCT was limited to the peripheral 2 cm to isolate smaller vessels. Linear regression adjusted for demographics, anthropometrics, smoking, second-hand smoke, renal function and scanner manufacturer. The mean±sd age of the 3023 participants was 69.3±9.3 years; 46% were never-smokers. Mean exposures were 0.80 μg·m-3 black carbon, 14.6 ppb NO2 and 11.0 μg·m-3 ambient PM2.5. Mean±sd peripheral TPVVCT was 79.2±18.2 cm3 and TPVVCT was 129.3±35.1 cm3. Greater black carbon exposure was associated with a larger peripheral TPVVCT, including after adjustment for city (mean difference 0.41 (95% CI 0.03-0.79) cm3 per interquartile range; p=0.036). Associations for peripheral TPVVCT with NO2 were similar but nonsignificant after city adjustment, while those for PM2.5 were of similar magnitude but nonsignificant after full adjustment. There were no associations for NO x or ozone, or between any pollutant and TPVVCT. Long-term black carbon exposure was associated with a larger peripheral TPVVCT, suggesting diesel exhaust may contribute to remodelling of small pulmonary vessels in the general population