3,471 research outputs found

    Alien Registration- Austin, George W. (Milo, Piscataquis County)

    Get PDF
    https://digitalmaine.com/alien_docs/8405/thumbnail.jp

    Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    Get PDF
    Wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information, could enable non-invasive monitoring. Previously reported sweat-based and other non-invasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanically flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plastic-based sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing. This application could not have been realized using either of these technologies alone owing to their respective inherent limitations. The wearable system is used to measure the detailed sweat profile of human subjects engaged in prolonged indoor and outdoor physical activities, and to make a real-time assessment of the physiological state of the subjects. This platform enables a wide range of personalized diagnostic and physiological monitoring applications

    Biological Case Against Downlisting the Whooping Crane and for Improving Implementation under the Endangered Species Act

    Get PDF
    The Whooping Crane (Grus americana; WHCR) is a large, long-lived bird endemic to North America. The remnant population migrates between Aransas National Wildlife Refuge, USA, and Wood Buffalo National Park, Canada (AWBP), and has recovered from a nadir of 15-16 birds in 1941 to ~540 birds in 2022. Two ongoing reintroduction efforts in Louisiana and the Eastern Flyway together total ~150 birds. Evidence indicates the U.S. Fish and Wildlife Service (USFWS) is strongly considering downlisting the species from an endangered to a threatened status under the Endangered Species Act (ESA). We examined the current status of the WHCR through the lens of ESA threat factors, the USFWS’s Species Status Assessment (SSA) framework, and other avian downlisting actions to determine if the action is biologically warranted. Our research indicates that WHCRs are facing an intensification of most threat drivers across populations and important ranges. The AWBP is still relatively small compared to other crane species and most birds of conservation concern. To date, only one avian species has been downlisted from an endangered status with an estimated population of \u3c3,000 individuals. Representation in terms of WHCRs historic genetic, geographic, and life history variation remains limited. Also, the lack of spatial connectivity among populations, reliance of the reintroduced populations on supplementation, and continued habitat loss suggest that WHCR populations may not be resilient to large stochastic disturbances. Given that reintroduced populations are not self-sustaining, neither supplies true redundancy for the AWBP. Proposed downlisting before recovery plan population criteria have been met is objectively unwarranted 3 and reflects USFWS inconsistency across ESA actions. Only by incorporating basic quantitative criteria and added oversight into ESA listing decisions can we avoid an action as misguided as downlisting the Whooping Crane without consideration of its recovery plan criteria or ostensibly its population ecology

    The search for stable prognostic models in multiple imputed data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In prognostic studies model instability and missing data can be troubling factors. Proposed methods for handling these situations are bootstrapping (B) and Multiple imputation (MI). The authors examined the influence of these methods on model composition.</p> <p>Methods</p> <p>Models were constructed using a cohort of 587 patients consulting between January 2001 and January 2003 with a shoulder problem in general practice in the Netherlands (the Dutch Shoulder Study). Outcome measures were persistent shoulder disability and persistent shoulder pain. Potential predictors included socio-demographic variables, characteristics of the pain problem, physical activity and psychosocial factors. Model composition and performance (calibration and discrimination) were assessed for models using a complete case analysis, MI, bootstrapping or both MI and bootstrapping.</p> <p>Results</p> <p>Results showed that model composition varied between models as a result of how missing data was handled and that bootstrapping provided additional information on the stability of the selected prognostic model.</p> <p>Conclusion</p> <p>In prognostic modeling missing data needs to be handled by MI and bootstrap model selection is advised in order to provide information on model stability.</p

    TOP2B Is Required to Maintain the Adrenergic Neural Phenotype and for ATRA-Induced Differentiation of SH-SY5Y Neuroblastoma Cells.

    Get PDF
    The neuroblastoma cell line SH-SY5Y is widely used to study retinoic acid (RA)-induced gene expression and differentiation and as a tool to study neurodegenerative disorders. SH-SY5Y cells predominantly exhibit adrenergic neuronal properties, but they can also exist in an epigenetically interconvertible alternative state with more mesenchymal characteristics; as a result, these cells can be used to study gene regulation circuitry controlling neuroblastoma phenotype. Using a combination of pharmacological inhibition and targeted gene inactivation, we have probed the requirement for DNA topoisomerase IIB (TOP2B) in RA-induced gene expression and differentiation and in the balance between adrenergic neuronal versus mesenchymal transcription programmes. We found that expression of many, but not all genes that are rapidly induced by ATRA in SH-SY5Y cells was significantly reduced in the TOP2B null cells; these genes include BCL2, CYP26A1, CRABP2, and NTRK2. Comparing gene expression profiles in wild-type versus TOP2B null cells, we found that long genes and genes expressed at a high level in WT SH-SY5Y cells were disproportionately dependent on TOP2B. Notably, TOP2B null SH-SY5Y cells upregulated mesenchymal markers vimentin (VIM) and fibronectin (FN1) and components of the NOTCH signalling pathway. Enrichment analysis and comparison with the transcription profiles of other neuroblastoma-derived cell lines supported the conclusion that TOP2B is required to fully maintain the adrenergic neural-like transcriptional signature of SH-SY5Y cells and to suppress the alternative mesenchymal epithelial-like epigenetic state
    corecore