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Abstract

Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes
(T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected
from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated
autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and
compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically
more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages,
prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and
protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that
increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated
autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally
aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and
mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other
than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These
data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of
mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal
mucin synthesis, as identified in autoimmune subjects.
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Introduction

As the incidence of type 1 diabetes (T1D) in developed countries

has been increasing at a rate far beyond the rate of population

growth, environmental factors have been considered as likely

candidates responsible for this change in disease incidence in

recent decades [1–3]. Of those factors, the gut microbiota have

come under recent interest; supported in part by observations in

both non-obese diabetic (NOD) mice and BioBreeding Diabetes

Prone (BB-DP) rats where antibiotic use prevents the onset of

diabetes [4,5]. Initial studies found that NOD mice raised in germ-

free environments would spontaneously develop diabetes [6],

while a recent study suggested that rather than being diminished

under germ-free conditions, the development of T1D can be

prevented through modulation of the intestinal microbiota [7].

Likewise, both the NOD mouse and BB-DP rats treated with

Freund’s adjuvants or Lactobacillus strains delayed or decreased

incidence of diabetes [8–16]. With respect to mechanisms of

action, the gut microbiome of NOD mice lacking an adaptor for

multiple innate immune receptors responsible for recognizing

microbial stimuli correlates with disease onset, revealing a

relationship between gut microbiota and the immune system [15].

To explore specific differences in the microbial communities

responsible for T1D modulation, 16S rRNA amplicons were

sequenced from BB-DP and BioBreeding Diabetes Resistant (BB-

DR) rat stool samples collected around the time of diabetes onset

[17]. This analysis revealed bacteria genera whose members were

either positively or negatively correlated with diabetes. Lactobacillus

and Bifidobacterium were more abundant in BB-DR rats while

Bacteroides and Clostridium were more abundant in BB-DP rats. Both
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Lactobacillus and Bifidobacterium are well known to have members

with probiotic characteristics.

In humans, inflammatory bowel diseases (IBD) such as Crohn’s

and ulcerative colitis, are thought to be autoimmune and have

been correlated with a depletion of commensal bacteria from the

phyla Firmicutes and Bacteroidetes [18]. Fecal microbial commu-

nities in identical twins with Crohn’s disease show a decrease in

diversity when compared to healthy twins; likewise, the microbial

communities of the twins with Crohn’s disease were less similar to

one another than the communities from the healthy individuals

[19]. Evidence from IBD studies indicates that gut microbiota are

responsible for driving inflammatory responses regulated by

regulatory T cells. Without regulatory T cells, commensal gut

microbiota can erroneously stimulate an inflammatory response

and cause IDB [20]. Autoimmune diseases such as multiple

sclerosis, rheumatoid arthritis, psoriasis, and T1D have all been

related to an increase in Th1/Th17 as the result of an elevated or

uncontrolled immune response [21].

With respect to human T1D, the proportion of bacteria within

the phylum Bacteroidetes increases over time in unhealthy (i.e.,

autoantibody positive, ‘‘autoimmune’’) subjects while in healthy

non-T1D prone subjects, the proportion of the Firmicutes within

the population increases [22]. In addition, the case samples within

that study were less diverse than the control samples, and case

microbiomes had lower Shannon diversity compared to those in

individuals who progressed towards autoimmune T1D [22]. Over

time, case microbial communities became increasing less similar to

each other compared to the control communities who were more

similar to each other. Taxonomic identity provides information

regarding the microbial communities, but falls short of expressing

the functions present in the environment. To determine the

functions that define the autoimmune microbiome, metagenomics

analysis was needed and forms the subject of this report.

Methods

Ethics statement
This research has been approved in writing by the Institutional

Review Board of the University of Florida. The analysis of the

stool samples was done without knowledge of the identity of the

human subjects. The Diabetes Prevention and Prediction study

group in Finland obtained informed consent from the parents of

the subjects involved for the collection of the stool samples.

Written consent was obtained from the parents to collect these

samples.

The samples used in this study came from eight Finnish children

described previously [22]. Fecal samples were taken after two

autoimmune antibodies were identified in the four case samples,

and at corresponding time points in controls. The children were

age matched and were all HLA-DQ genotype positive. DNA

extraction was performed as described previously [23] and

sequencing was conducted by Argonne National Laboratory.

The original sequences are submitted to GenBank as study

accession number SRA036573.1.

The metagenome library produced paired reads with an overlap

region of approximately 30 bases. Paired sequences were

assembled using a custom script, stitch.py. Sequences that were

not paired were quality trimmed using default CLC Genomics

Workbench version 4.0 (CLC) parameters. Reads less than 50

bases in length were discarded.

The average genome size of each sample was calculated using a

recently described normalization method [24] whereby the

metagenome data is mined for the highly conserved, single copy

genes rplA, rplD, rpoB, rpsJ, rplC, rpoA, rpsG, and rpsQ. Genome size

calculations are made on the basis of the abundance of these genes

found within each metagenomic sample.

Comparisons of functions determined directly from contigs

using BLASTX revealed highly similar microbiomes at the

function level. However, because this analysis was only conducted

at the contig level, information was only provided about the

presence or absence of a particular function. Because of this

restriction, little could be done to compare between samples. It is

speculated that this is primarily as a result of the depth of

sequencing in which even low abundant genomes are sequenced

and their DNA fragments are assembled into contigs. Since the gut

microbiomes in the study are comprised of highly similar

functions, it was determined that a qualitative approach was

needed in order to resolve differences between the metagenomes.

Rather than making direct comparisons of contigs to sequenced

genomes, in which the prevalence of particular functions cannot

be determined, a quantitative approach was taken in which each

contig was used as the basis for ORF prediction using the Prodigal

algorithm, followed by an assessment of the coverage of each

ORF.

Prodigal was run using a metagenome setting in which pre-

created training files are used to make the predictions. The output

of the algorithm includes both the nucleotide sequences and their

amino acid translations. The nucleotide sequences were used to

determine the coverage of each ORF by mapping reads back to

them using the same parameters that were used during de novo

assembly. The number of reads mapped to an ORF correlates to

the prevalence of the function within the genomes of the

microbiome. The amino acid sequences were used for functional

annotation using phmmer.

Phmmer conducts alignments of amino acid sequences to amino

acid databases much like BLASTP does. However, unlike

BLASTP, phmmer uses a hidden Markov model to predict

protein domains, thus affording the algorithm greater specificity

and a lower rate of false positives. The SEED database was chosen

for the ORF alignments because of its subsystem structure. With

the goal being to group functions found within the microbiomes

into hierarchical structures, in order to determine if a particular

subsystem or subsystem hierarchy (in addition to function) is more

prevalent in cases or controls, the SEED database was filtered for

references with subsystem information.

Having established the abundance of each function and

functional hierarchy based on the number of reads, it is possible

to make a quantitative comparison between the abundance of

functions within the microbiomes. However, due to the large

number of sequences representing each microbiome, and the

relatively small counts within each function, statistical methods

such as chi-square are unable to determine significance. To

overcome this, a Poisson model was used.

De novo assemblies were conducted using a global CLC

alignment with parameters dependent on read length. The most

stringent cost values for mismatches, insertions, and deletions were

used. A minimum contig length of 400 bases was required. Open

reading frames were predicted from contigs produced from the de

novo assemblies using the metagenome implementation of

Prodigal v.2.0 (citation). To determine the coverage of each

ORF, CLC reference assemblies were conducted to the nucleotide

sequences of each ORF using the parameters used during de novo

assembly.

Functions were assigned to predicted ORFs by protein

alignments with phmmer v.3.0 (http://hmmer.org/) and a version

of the SEED database downloaded in August 2010 and modified

to included only sequences with subsystem annotations. Only

alignments with E-values less than 1026 were considered for
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functional assignment. The best phmmer hit for each ORF was

selected by choosing the match with the highest full-sequence bit-

score. The full-sequence bit-score is calculated by summing the

bit-scores for each protein domain, and the individual domain bit-

scores are calculated based on a hypothetical envelope of where

the domain is located on the protein, based on the hidden Markov

model of the phmmer algorithm.

To compare the metabolic potential of case and control

metagenomes, each functional hierarchy and function defined by

the SEED subsystems database was quantified by the number of

reads in each sample for that function.

The ORFs that did not have significant matches to the SEED

subsystem database were combined and their amino acid

sequences were clustered using CD-HIT v.4.3 and a 40%

sequence identity threshold. The corresponding nucleotide

translations for the sequences from each cluster were used to

determine the coverage of each cluster, in each sample, using CLC

and the reference assembly parameters that were used for

functional ORF coverage analysis.

Taxonomic assignment was conducted on all reads over 50

bases long. Classification was determined through reference

assemblies to an RDP database containing sequences for Archaea,

Bacteria, and Eukaryota, modified by TaxCollector [25]. RDP

and viral genome databases were downloaded in February 2011,

and a fungal ITS database in September 2010. The assemblies

were conducted using CLC at 98% length fraction with similarity

cutoffs that varied based on the taxonomic level being analyzed

(Figure 1).

The number of reads in each functional hierarchy, function,

cluster, and OTU were used in a Poisson log-linear regression

model to identify categories with significantly different read counts

between cases and controls. A p-value of 0.01 or less was chosen as

the criterion for statistical significance.

KEGG maps were drawn based on statistically significant

functions annotated by SEED subsystem database entries with

enzyme commission (EC) numbers. Principal component analysis

(PCA) was conducted on abundance measures for SEED functions

and OTUs. For both SEED functions and OTUs, the raw counts

were standardized by dividing by the total number of reads for each

sample, and the subsequent fractions were log transformed. After

log transforming the SEED function abundances, the data were

centered using the formula found in the supplemental materials.

OTUs were first filtered by significance according to the Poisson

model (OTUs were required to have a p-value of 0.01) before PCA

was performed. The calculations for PCA were done using the R

‘‘prcomp’’ function and plotted using the ‘‘plot’’ function.

The statistical model was fit as a generalized linear mixed model

with log link. A subject specific random effect was used to control

Figure 1. The pipeline of metagenome sequence analysis used in this work.
doi:10.1371/journal.pone.0025792.g001
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for the correlation, this is typically called a Poisson regression

model with a subject specific random effect. To fit the data, the

glmer package in R, under the library lme4, with family = Poisson,

was used [26–28].

Results

Average genome size
To determine whether our analyses might be skewed by a

difference in average genome size between cases and controls, the

average genome size within the DNA of each sample was

determined. No difference in average genome size between the

case and control samples was observed using a paired, two-tailed t-

test (Fig. S1). The average genome size of the control metagenomes

was 2.8760.21 Mbp while that of the case metagenomes was

2.4860.18 Mbp. Thus, any quantitative functional differences

observed between cases and controls cannot be attributed to any

bias related to differences in average genome size.

Steps in metagenome analysis
The analysis of the metagenomes in this work had four

objectives: 1) the calculation of the diversity of predicted proteins

in each sample; 2) the quantitative differences in the abundance of

functions between cases and controls; 3) the depiction of these

differences on KEGG maps, and 4) the mining of highly conserved

rRNA genes to determine the taxonomic differences between cases

and controls (Fig. 1). A guiding principle of this work was to

determine the quantitative differences in the functions of cases and

controls by mapping the raw reads back to the predicted ORFs by

reference assembly. Those ORFs were identified through the

assembly of the data.

The de novo assemblies made from these data resulted in contigs

representing 89% of total reads after pairing and quality trimming.

A minimum contig length of 400 bases was required for the entry

of any contig into our database. The largest contig was

444,885 bp. The average contig length was 1,487 bases, and the

median length was 634 bases. Prodigal was used to predict an

average of 121,523 ORFs per sample, which represented 77% of

all paired and unpaired reads. Phmmer alignments to the SEED

subsystem database established functional assignment for an

average of 118,928 ORFs per sample representing 42% of all

reads. All ORFs were classified to 2,887 functions and 959

functional hierarchies.

Analysis of the metagenomics data
According to the Poisson model, 911 functions exhibit a

statistically significant difference in prevalence between cases and

controls, where 114 were more prevalent in cases and 797 in

controls (supporting dataset S1). At the most general functional

hierarchy, carbohydrates and stress responses were more prevalent

in cases, while 17 hierarchies, mostly in secondary metabolism,

were more prevalent in controls (Fig. 2, supporting dataset S1).

The Poisson model identifies nearly eight times as many functions

with a greater abundance in controls verses cases. These functions

are also of much greater abundance than those identified in cases

(supporting dataset S1).

Abundances for all functions were used for principle compo-

nents analysis (PCA) in order to determine the clustering of

samples (Fig. S2). PCA reveals that the controls all exhibit similar

functionality while the cases all express different functions between

each other and the controls. The majority of SEED functions are

annotated with EC numbers. These EC numbers can be used to

Figure 2. Statistically significant metabolic steps in controls (blue) and cases (red).
doi:10.1371/journal.pone.0025792.g002
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map functions identified with SEED onto KEGG maps (Fig. S3).

Of the 1,061 pathways identified in KEGG, 24 and 166 were

statistically more prevalent in cases and controls, respectively

(Fig. 2). The complete list of functions and subsystems, their

abundances, the results of the Poisson model, and their prevalence

in either cases or controls, can be found within the supplemental

data (supporting dataset S2). Among all of the metagenome

samples, CD-HIT clustered 517,636 predicted ORFs with

unknown function into 186,005 clusters. Of these, 38,645 have

more than 100 reads, and according to the Poisson model, 3,791

exhibit a statistically significant difference in the number of reads

between cases and controls.

The metagenomic data was also mined for 16S rRNA. Using

reference assembly, all reads were mapped against the TaxCol-

lector-modified RDP database for 16S rRNA [25]. Assuming that

there is one 16S rRNA gene (1,400 bases long) for every megabase

of DNA sequenced in a metagenome, 19.49 gigabases in the eight

metagenomes would contain 19,490 16S rRNA genes and 219,670

16S rRNA reads. Taxonomic assignment based on the 16S rRNA

gene assigned 251,058 reads to the domain bacteria and 126,817

reads to known bacterial species. The complete list of operational

taxonomic units at six taxonomic levels, their relative abundances,

the statistical results, and their prevalence in either cases or

controls is available in the supplementary material (supporting

dataset S3).

At the phylum level and at p-values less than 0.001,

Actinobacteria, Bacteroidetes, and Proteobacteria were higher in

cases while Firmicutes, Fusobacteria, Tenericutes, and Verruco-

microbia were higher in controls. With a p-value of 0.01 or less,

161 genera of bacteria were found that differed in abundance

between cases and controls (supporting dataset S4). Of these, 79

were higher in cases, with the remaining 82 higher in controls.

The differences between cases and controls are particularly

striking at the genus level. The greatest % differences between

cases and controls were in the genera Prevotella and Bacteroides

where Prevotella was much more abundant in controls and

Bacteroides was much higher in cases (Fig. 3, supporting dataset

S4). The large decline in Bacteroides in controls compared to cases is

compensated entirely by Prevotella and the butyrate producers.

The butyrate producers include members of the genera Eubacte-

rium, Fusobacterium, Anaerostipes, Roseburia, Subdoligranulum, Faecalibac-

terium, and other cultured genera, which have not yet been given

genus names (supporting dataset S4).

In contrast to the butyrate producers, the lactate producers,

Lactoabcillus, Lactococcus, Bifidobacterium, and Streptococcus were more

abundant in cases; with the difference between cases and controls

being 1.19% of all 16S rRNA reads. Another group of interest is

the mucin-degrading bacteria in the genera Prevotella and

Akkermansia. There is a 20- and 140-fold higher proportion of

Prevotella and Akkermansia, respectively, in controls compared to

cases. Prevotella is the second most abundant genus in controls

comprising over 8.8% of all 16S rRNA reads. All of these trends

observed at the genus level are also seen at the species level. Other

bacteria that compete with the butyrate producers for lactate as

carbon source, such as Veillonella, produce propionate from lactate

fermentation rather than butyrate. Veillonella can compete for

lactate substrate with the butyrate producers and are in statistically

higher abundance in cases than controls. Cases possessed 6.7 times

more Veillonella than did controls. Other genera known to produce

short chain fatty acids (SCFA) other than butyrate, such as

Bacteoides, and Alistipes were proportionately higher in cases than

controls. In summary, the 16S rRNA data shows that the

increased proportion of bacteria in cases that produce SCFA

other than butyrate producers are substituted by a corresponding

increase in the proportion of butyrate producers and mucin

degraders, in control subjects (Fig. 4).

The functional data support the 16S rRNA results which

suggest a higher level of butyrate production in control micro-

biomes. The proportion of reads that assemble to butyryl-CoA

dehydrogenase (EC 1.3.99.2) is significantly higher in controls (p

value = 0.0005) than in cases. Butyryl-CoA dehydrogenase cata-

lyzes an important rate-limiting step in butyrate synthesis in E. coli

[29]. Unfortunately, the known mucin degradation genes [30] are

not present in the SEED database used for the discovery of gene

functions in these datasets. In addition, the mucin degrading genes

have only been described in one organism, making it difficult to

mine these genes accurately from metagenomic data.

Discussion

Our previous work showed taxonomic differences between the

gut microbiomes of healthy children compared to autoimmune

children in a cohort of samples from Finland [22]. In this work, the

Figure 3. Mean proportion of the 11 most abundant genera
that differ significantly between cases and controls (p val-
ue#0.01).
doi:10.1371/journal.pone.0025792.g003

Figure 4. Mean proportion of four functional groups that differ
significantly between cases and controls (p value#0.01).
Depicted is the abundance of 16S rRNA reads that are assigned to
genera known to produce butyrate, lactate, or other short chain fatty
acids (SCFA) such as propionate, acetate, or succinate. Also shown is the
proportion of bacteria that degrade mucin.
doi:10.1371/journal.pone.0025792.g004
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objective was to learn the metabolic potential of these bacterial

communities by shotgun sequencing DNA extracted from the stool

collected from children at approximately the time when they were

diagnosed as autoimmune. A new approach to the analysis of

metagenomic DNA is described herein which allows the statistical

quantitative analysis of the functional differences between cases

and controls.

The analysis methodology described herein revealed striking

functional differences between cases and controls. These were seen

at the levels of community processes, whole pathways as well as for

individual genes. At the community level, the microbiome of the

healthy children are far more functionally diverse than are the

autoimmune microbiomes. For example, for nearly every major

function category, as defined by the SEEDS subsystems, the

relative abundance of reads was statistically higher in controls

rather than cases. These major categories include amino acid

metabolism, carbohydrate metabolism, RNA metabolism, DNA

metabolism, cell wall and capsule proteins, nucleotides and

nucleosides, cofactors and vitamins, motility and chemotaxis,

nitrogen metabolism, membrane transport, phosphorous metab-

olism, virulence, and respiration.

The lower functional diversity in cases suggests that the case

microbiomes possess more bacteria that are fastidious, requiring

more nutrients in the external environment for survival and

growth. If the gut epithelial layer in autoimmune children is leaky

as suggested by Vaarala et al. [3], the host may be leaking more

Figure 5. Forty known functions that differ significantly between cases and controls (p value#0.01) as determined by the log of the
ration between cases and controls. Twenty of these functions are the highest in cases relative to controls while the other twenty are the highest
in controls relative to cases.
doi:10.1371/journal.pone.0025792.g005
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substrates into the gut than is typically seen in healthy large

intestines. In contrast, the abundance of reads that map to ORFs

of unknown function is statistically higher in cases than controls.

So although, the vast majority of bacteria found in both control

and case samples can be identified to the genus level, the case

genomes are much less well characterized at the functional level.

One reason for this is that there appears to be a much higher

abundance of anaerobes in cases than controls. One indicator of

higher anaerobicity in cases is the higher number of reads

mapping to sulfur metabolism in cases. Control communities have

far more genes involved in aerobic respiration while cases have far

more anaerobic respiratory reductases. As anaerobic bacteria are

more difficult to characterize genetically than are aerobic bacteria,

it is not surprising that less is known about their biochemistry than

the aerobes.

Although more reads controls are found that match known

virulence determinants than in cases, there are significantly more

reads in cases for some very specific virulence factors such as

adhesions, Staphylococcus pathogenicity island genes, and antibiotic

resistances. The forty most abundant differences between cases

and controls show that stress responses, virulence factors, phages,

prophages, quorum sensing, and motility genes are much more

abundant in terms of the % of total reads in cases than controls

(Fig. 5). In contrast, controls are more abundant in functions

related to central metabolism such as DNA, RNA, and protein

metabolism and respiration.

One of the intriguing findings with these data relates to a

possible role of butyrate production in the maintenance of gut

health. Butyrate is known as an anti-inflammatory short chain

fatty acid that contributes to colon health [31–33]. The 16S rRNA

mining of these data shows that many of the bacterial genera

significantly more abundant in controls compared to cases are

butyrate producers. In addition, butyrate induces mucin synthesis

[34,35], decreases bacterial transport across metabolically stressed

epithelia [36], and improves the intestinal barrier by increasing

tight junction assembly [37,38]. Mucin is a glycoprotein made by

the host that is believed to maintain the integrity of the gut

epithelium. Perspective signatures of increased mucin synthesis in

the gut may be the presence of Prevotella and Akkermansia as both

genera are known to degrade mucin [30,39]. Akkermansia and

Prevotella are significantly more abundant in the controls than in

the cases. Thus, a working hypothesis for a role for bacteria in

preventing autoimmunity is that the presence of butyrate

producing bacteria in healthy individuals may be inducing mucin

synthesis in the gut, which maintains gut integrity. The presence of

Akkermansia and Prevotella in the gut may provide a useful, simple

prediction of mucin content in the gut.

All of these data, as well as work from others in the literature,

suggest a model for the role of bacteria in a healthy gut (Fig. 6).

The total number of lactic acid producing and butyrate producing

bacteria is higher in controls than in cases [22]. Butyrate induces

mucin synthesis [34,35,40,41]. The higher number of butyrate

producers in controls is confirmed by 16S rRNA analysis and by a

higher abundance in controls of a key enzyme that catalyzes a

rate-limiting step in butyrate synthesis. Mucin is well known as a

glycoprotein produced by the host that contributes to gut integrity

[42]. Prevotella and Akkermansia are much more abundant in

controls compared to cases (Fig. 3, supporting dataset S4). These

bacteria are mucin degraders [39], often found in the human gut

[43], and this work suggests that they may be useful indicators of

gut integrity.

In contrast to controls, the relative absence of Prevotella and

Akkermansia in cases suggests a lack of mucin on the epithelial layer

of intestines of cases, and may be a diagnostic of future or current

gut permeability. In addition, cases have a much larger population

of bacteria such as Bacteroides, Veillonella and Alistipes compared to

controls. These bacteria ferment glucose and lactate to propionate,

acetate, and succinate. Unlike butyrate, these short chain fatty

acids do not induce mucin synthesis [34,35,40,41]. Other factors

may also be increasing mucin synthesis. Addition of a mixture of

amino acids to the diets of dextran sulfate sodium-treated rats also

increases mucin synthesis [44]. The control microbiomes have a

significantly higher abundance of amino acid synthesis genes than

do the case microbiomes.

Figure 6. Model for a bacterial role in gut integrity leading to either a healthy state or autoimmunity for type 1 diabetes. In this
model, the fate of lactate is crucial in determining gut health. Conversion to butyrate results in more mucin synthesis and tighter junctions.
Conversion to other short chain fatty acids (SCHAs) reduces mucin synthesis and tight junctions. Bacterial genera listed are examples of a given
phenotype. Other bacteria may also be involved in these characteristics.
doi:10.1371/journal.pone.0025792.g006
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Although lactic acid producers may be very important in the

maintenance of gut health, the fate of the lactic acid produced by

these bacteria may be equally important. If that fate is butyrate

production, a healthy gut seems more likely. If the microbiome of

the gut encourages the production of other short chain fatty acids,

gut permeability may occur. Other factors also are likely to play a

role in gut inflammation such as the large amount of adhesion

genes found in cases. In addition, Lactobacillus strains can induce

specific changes in the immune system of NOD mice that can

increase or decrease diabetes [45]. Intestinal microbes and the

innate immune system also interact to affect the development of

diabetes in NOD mice [15]. Data presented here and published

elsewhere suggest that microbial-induced butyrate production, and

subsequent mucin synthesis, with a corresponding enhancement of

tight junctions may contribute to the development of autoimmu-

nity for type 1 diabetes in humans.

Supporting Information

Figure S1 Average genome size in each metagenome sample as

determined from the abundance of single copy, highly conserved

genes in each sample. No statistical difference was observed

between cases and controls.

(TIF)

Figure S2 Principle components analysis for functions shows

greater similarity between controls (blue) than between cases (red).

(TIF)

Figure S3 KEGG pathways that were identified across all eight

metagenomes using the SEED subsystems database.

(TIF)

Supporting Dataset S1 The percent of total reads for all

statistically different functions between cases and controls are

listed.

(XLSX)

Supporting Dataset S2 The percent of total reads for all

functions identified in cases and controls.

(XLSX)

Supporting Dataset S3 The results of 16S rRNA mining from

the metagenomic data. All six levels of taxonomic discrimination

are listed with the level of statistical difference between cases and

controls for each taxon. Data are listed as a % of all 16S rRNA

reads mined from the metagenomic data.

(XLSX)

Supporting Dataset S4 The genera that differ statistically

between cases and controls at a p-values of 0.01 or less. Data are

listed as a % of all 16S rRNA reads mined from the metagenomic

data.

(XLSX)
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