75 research outputs found

    A bioregional classification of the continental shelf of northeastern North America for conservation analysis and planning based on representation

    Get PDF
    Understanding how well National Marine Sanctuaries and other marine protected areas represent the diversity of species present within and among the biogeographic regions where they occur is essential for assessing their conservation value and identifying gaps in the protection of biological diversity. One of the first steps in any such assessment should be the development of clearly defined and scientifically justified planning boundaries representing distinct oceanographic conditions and faunal assemblages. Here, we propose a set of boundaries for the continental shelf of northeastern North America defined by subdivisions of the Eastern Temperate Province, based on a review and synthesis (i.e. meta-analysis) of the scientific literature. According to this review, the Eastern Temperate Province is generally divided into the Acadian and Virginian Subprovinces. Broad agreement places the Scotian Shelf, Gulf of Maine, and Bay of Fundy within the Acadian Subprovince. The proper association of Georges Bank is less clear; some investigators consider it part of the Acadian and others part of the Virginian. Disparate perspectives emerge from the analysis of different groups of organisms. Further, while some studies suggest a distinction between the Southern New England shelf and the rest of the Mid-Atlantic Bight, others describe the region as a broad transition zone with no unique characteristics of its own. We suggest there exists sufficient evidence to consider the Scotian Shelf, Gulf of Maine, Georges Bank, Southern New England, and Southern Mid-Atlantic Bight as distinct biogeographic regions from a conservation planning perspective, and present a set of proposed mapped boundaries. (PDF contains 23 pages.

    Developing alternatives for optimal representation of seafloor habitats and associated communities in Stellwagen Bank National Marine Sanctuary

    Get PDF
    The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.

    New England Coral Canyons and Seamounts

    Get PDF
    Just 150 miles off the coast of Cape Cod lie some of our country's greatest marine treasures. Hidden beneath thousands of feet of ocean, where the continental shelf drops off to the pitch-black abyss of the deep Atlantic Ocean, five massive canyons plunge down, some deeper than the Grand Canyon. Just beyond these canyons, four extinct underwater volcanoes – called seamounts – rise as high as 7,700 feet above the ocean floor, higher than any mountain east of the Rockies and the only such seamounts in U.S. Atlantic waters. The plunging walls and deep floors of the canyons and the towering slopes of the seamounts are alive with vivid coldwater corals of otherworldly beauty – some the size of small trees and centuries, if not thousands of years, old. These corals, together with other structure-forming fauna including sponges and anemones, form a foundation for vibrant deep-sea ecosystems, providing food, spawning habitat, and shelter for an array of fish and invertebrate species. The varied habitats and strong and complex currents of the canyons and seamounts also support significant and diverse concentrations of marine life throughout the water column. These deep-sea biodiversity hotspots are sites of active scientific exploration, investigations and discovery. The canyons and seamounts proposed for designation represent tremendous opportunities for further scientific exploration and education around deep-sea ecosystems. Importantly, these remote and relatively pristine areas function as a scientific reference site, giving researchers the chance to advance our understanding of undisturbed nature in a world otherwise transformed by humans. In recognition of this area's value, 141 eminent ocean scientists from 84 research institutions, along with the three major New England Aquaria and 226 accredited aquaria from around the world, have urged robust long-term protections for these "particularly outstanding examples" of New England's canyons and seamounts

    Individual and Population Level Variation in the Reproductive Potential of Deep-Sea Corals From Different Regions Within the Gulf of Maine

    Get PDF
    Deep-sea corals are of conservation concern in the North Atlantic due to prolonged disturbances associated with the exploitation of natural resources and a changing environment. As a result, two research cruises in the Gulf of Maine region during 2014 and 2017 collected samples of two locally dominant coral species, Primnoa resedaeformis and Paramuricea placomus, at six locations to investigate reproductive ecology. Remotely operated vehicles (ROVs) were used to collect specimens that were examined via paraffin histology, and coincident video surveys were used to determine size class distributions. Both species were identified as gonochoristic, and sampled locations exhibited dissimilarities in spermatocyst development and oocyte size except for those in close geographic proximity. Fecundities exhibited substantial ranges across sample locations and average oocyte sizes (±SD) were 140 ± 117 μm for P. resedaeformis and 64 ± 46 μm for P. placomus. In addition, colony size distributions were also significantly different across sampling locations. Notably, the Outer Schoodic Ridge sample location, with larger colony and oocyte sizes, was identified as a potential key source population of reproductive material in the Gulf of Maine. These data were used to calculate differences in reproductive potential based on relationships between colony morphology and reproductive output using height as a predictive proxy. Furthermore, calculated age at first reproduction, 7.6–19.8 years for P. resedaeformis and 20.7–37 years for P. placomus, which may be dependent on sex of the colony, provides a metric for estimating the amount of time these coral habitats will take to recover. This investigation, in response to historical population impacts and environmental change, links reproductive and morphometric relationships to inform population scale reproductive models, while also establishing an understanding of regional scale gametogenic variability within the Gulf of Maine region

    Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific)

    Get PDF
    Studies of mixed-species groups of animals can reveal emergent complexities of collective behaviors. In this study we collected data on mixed-species hunting groups composed primarily of piscivorous fishes (species composition, abundance, behavioral interactions) and used both multivariate and network analyses to quantify pair-wise and guild level behavioral relationships. Our results indicate that such collective behaviors exhibit consistent patterns of associations (33 species with 282 pair-wise links within the observed network) with 10 dominant species accounting for 60% of pair-wise interactions. Species richness within groups varied (mean = 2.4, range 2-6 species) as did group size (mean = 8.1 individuals, range 2-80). Mixed-species groups, in general, were composed of species representing morphologically diverse forms that appeared to enhance access to shelter sites and implement diverse strategies for prey capture. It is noteworthy that the composition of groups did not reflect the relative abundances of their component species within the overall community of fishes, suggesting that group membership was an elective choice. The identification of these patterns, assuming they are persistent features of these communities, can be used as a foundation for studies to assess dynamics of mixed-species relationships, rates of predator success based on group membership, demographic consequences, and responses to variations in habitat attributes and associated prey resources. Such information could be used to interpret the nature of multispecies interactions within predator communities and potentially aid in conservation and management.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

    Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    Get PDF
    Background: In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings: We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43uN, 63–71uW, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance: The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life-history characteristics of target species, and the lack of trained taxonomists

    Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management

    Get PDF
    We compare objectives and approaches of four regional studies of marine biodiversity: Gulf of Maine Area Census of Marine Life, Baltic Sea History of Marine Animal Populations, Great Barrier Reef Seabed Biodiversity Project, and Gulf of Mexico Biodiversity Project. Each program was designed as an "ecosystem" scale but was created independently and executed differently. Each lasted 8 to 10 years, including several years to refine program objectives, raise funding, and develop research networks. All resulted in improved baseline data and in new, or revised, data systems. Each contributed to the creation or evolution of interdisciplinary teams, and to regional, national, or international science-management linkages. To date, there have been differing extents of delivery and use of scientific information to and by management, with greatest integration by the program designed around specific management questions. We evaluate each research program's relative emphasis on three principal elements of biodiversity organization: composition, structure, and function. This approach is used to analyze existing ecosystem-wide biodiversity knowledge and to assess what is known and where gaps exist. In all four of these systems and studies, there is a relative paucity of investigation on functional elements of biodiversity, when compared with compositional and structural elements. This is symptomatic of the current state of the science. Substantial investment in understanding one or more biodiversity element(s) will allow issues to be addressed in a timely and more integrative fashion. Evaluating research needs and possible approaches across specific elements of biodiversity organization can facilitate planning of future studies and lead to more effective communication between scientists, managers, and stakeholders. Building a general approach that captures how various studies have focused on different biodiversity elements can also contribute to meta-analyses of worldwide experience in scientific research to support ecosystem-based management
    corecore