112 research outputs found

    GDF15 Plasma Level Is Inversely Associated With Level of Physical Activity and Correlates With Markers of Inflammation and Muscle Weakness

    Get PDF
    Growth differentiation factor 15 (GDF15) is a stress molecule produced in response to mitochondrial, metabolic and inflammatory stress with a number of beneficial effects on metabolism. However, at the level of skeletal muscle it is still unclear whether GDF15 is beneficial or detrimental. The aim of the study was to analyse the levels of circulating GDF15 in people of different age, characterized by different level of physical activity and to seek for correlation with hematological parameters related to inflammation. The plasma concentration of GDF15 was determined in a total of 228 subjects in the age range from 18 to 83 years. These subjects were recruited and divided into three different groups based on the level of physical activity: inactive patients with lower limb mobility impairment, active subjects represented by amateur endurance cyclists, and healthy controls taken from the general population. Cyclists were sampled before and after a strenuous physical bout (long distance cycling race). The plasma levels of GDF15 increase with age and are inversely associated with active lifestyle. In particular, at any age, circulating GDF15 is significantly higher in inactive patients and significantly lower in active people, such as cyclists before the race, with respect to control subjects. However, the strenuous physical exercise causes in cyclists a dramatic increase of GDF15 plasma levels, that after the race are similar to that of patients. Moreover, GDF15 plasma levels significantly correlate with quadriceps torque in patients and with the number of total leukocytes, neutrophils and lymphocytes in both cyclists (before and after race) and patients. Taken together, our data indicate that GDF15 is associated with decreased muscle performance and increased inflammation

    Dietary fibre may mitigate sarcopenia risk:Findings from the NU-AGE cohort of older european adults

    Get PDF
    Sarcopenia is characterised by a progressive loss of skeletal muscle mass and physical function as well as related metabolic disturbances. While fibre-rich diets can influence metabolic health outcomes, the impact on skeletal muscle mass and function is yet to be determined, and the moderating effects by physical activity (PA) need to be considered. The aim of the present study was to examine links between fibre intake, skeletal muscle mass and physical function in a cohort of older adults from the NU-AGE study. In 981 older adults (71 ± 4 years, 58% female), physical function was assessed using the short-physical performance battery test and handgrip strength. Skeletal muscle mass index (SMI) was derived using dual-energy X-ray absorptiometry (DXA). Dietary fibre intake (FI) was assessed by 7-day food record and PA was objectively determined by accelerometery. General linear models accounting for covariates including PA level, protein intake and metabolic syndrome (MetS) were used. Women above the median FI had significantly higher SMI compared to those below, which remained in fully adjusted models (24.7 ± 0.2% vs. 24.2 ± 0.1%, p = 0.011, η2p = 0.012). In men, the same association was only evident in those without MetS (above median FI: 32.4 ± 0.3% vs. below median FI: 31.3 ± 0.3%, p = 0.005, η2p = 0.035). There was no significant impact of FI on physical function outcomes. The findings from this study suggest a beneficial impact of FI on skeletal muscle mass in older adults. Importantly, this impact is independent of adherence to guidelines for protein intake and PA, which further strengthens the potential role of dietary fibre in preventing sarcopenia. Further experimental work is warranted in order to elucidate the mechanisms underpinning the action of dietary fibre on the regulation of muscle mass

    Short Telomere Length Is Related to Limitations in Physical Function in Elderly European Adults

    Get PDF
    The present study aims to explore the potential influence of leucocyte telomere length (LTL) on both a single indicator and a composite construct of physical functioning in a large European population of elderly men and women across diverse geographical locations. A total of 1,221 adults (65–79 years) were recruited from five European countries within the framework of NU-AGE study. The physical functioning construct was based on the 36-item Short Form Health Survey. Handgrip strength was used as a single indicator of muscle function and LTL was assessed using quantitative real-time PCR. Women had significantly longer (p < 0.05) LTL than men. Participants in Poland had significantly shorter LTL than in the other study centers, whereas participants in the Netherlands had significantly longer LTL than most of the other centers (p < 0.01). An analysis of LTL as a continuous outcome against physical functioning by using linear models revealed inconsistent findings. In contrast, based on an analysis of contrasting telomere lengths (first vs. fifth quintile of LTL), a significant odds ratio (OR) of 1.7 (95% CI: 1.1 – 2.6; p < 0.05) of having functional limitation was observed in those belonging to the first LTL quintile compared to the fifth. Interestingly, having the shortest LTL was still related to a higher likelihood of having physical limitation when compared to all remaining quintiles (OR: 1.5, 95% CI: 1.1 – 2.1; p < 0.05), even after adjustment by study center, age, sex, and overweight status. Collectively, our findings suggest that short LTL is an independent risk factor that accounts for functional decline in elderly European populations. The influence of LTL on functional limitation seems driven by the detrimental effect of having short telomeres rather than reflecting a linear dose-response relationship

    Mediterranean diet and inflammaging within the hormesis paradigm

    Get PDF
    A coherent set of epidemiological data shows that the Mediterranean diet has beneficial effects capable of preventing a variety of age-related diseases in which low-grade, chronic inflammation/inflammaging plays a major role, but the underpinning mechanism(s) is/are still unclear. It is suggested here that the Mediterranean diet can be conceptualized as a form of chronic hormetic stress, similar to what has been proposed regarding calorie restriction, the most thoroughly studied nutritional intervention. Data on the presence in key Mediterranean foods of a variety of compounds capable of exerting hormetic effects are summarized, and the mechanistic role of the nuclear factor erythroid 2 pathway is highlighted. Within this conceptual framework, particular attention has been devoted to the neurohormetic and neuroprotective properties of the Mediterranean diet, as well as to its ability to maintain an optimal balance between pro- and anti-inflammaging. Finally, the European Commission-funded project NU-AGE is discussed because it addresses a number of variables not commonly taken into consideration, such as age, sex, and ethnicity/ genetics, that can modulate the hormetic effect of the Mediterranean diet

    Cross-sectional analysis of the correlation between daily nutrient intake assessed by 7-day food records and biomarkers of dietary intake among participants of the NU-AGE study

    Get PDF
    Methods for measuring diet composition and quantifying nutrient intake with sufficient validity are essential to study the association between nutrition and health outcomes and risk of diseases. 7-day food records provides a quantification of food actually and currently consumed and is interesting for its use in intervention studies to monitor diet in a short-term period and to guide participants toward changing their intakes. The objective of this study is to analyze the correlation/association between the daily intake of selected nutrients (collected by a 7-day food records plus a mineral/vitamin supplementation questionnaire) and estimates of energy expenditure as well as blood and urine biomarkers of dietary intakes in 1,140 healthy elderly subjects (65–79 years) at baseline of the NU-AGE intervention study (NCT01754012, clinicaltrials.gov). The results show that: the daily intake of energy correlated significantly with predicted total energy expenditure (pTEE) (ρ = 0.459, p < 0.001, and q < 0.001); protein intake correlated significantly with the ratio of 24 h urinary urea to creatinine excretion (ρ = 0.143 for total protein intake, ρ = 0.296 for animal protein intake, and ρ = 0.359 for protein intake/body weight, p < 0.001 and q < 0.001 for each correlation); vitamin B12 and folate intakes correlated significantly with their serum concentrations (ρ = 0.151 and ρ = 0.363, respectively; p < 0.001 and q < 0.001 for each correlation); sodium and potassium intakes correlated significantly with their 24 h urinary excretion (ρ = 0.298 and ρ = 0.123, respectively; p < 0.001 and q < 0.001 for each correlation); vitamin B12 and folate intakes were negatively associated with plasma homocysteine measure (p = 0.001 and p = 0.004, respectively); stratifying subjects by gender, the correlations between energy intake and pTEE and between potassium intake and its 24 h urinary excretion lost their significance in women. Even if the plasma and urinary levels of these nutrients depend on several factors, the significant correlations between daily reported intake of nutrients (protein, vitamin B12, folate, and sodium) and their blood/urinary markers confirmed that the 7-day food records (plus a supplementation questionnaire) provides reliable data to evaluate short-term current dietary intake in European elderly subjects and it can be exploited to guide and monitor NU-AGE participants through the shift of their diet according NU-AGE recommendations

    Identification of Pre-frailty Sub-Phenotypes in Elderly Using Metabolomics

    Get PDF
    Aging is a dynamic process depending on intrinsic and extrinsic factors and its evolution is a continuum of transitions, involving multifaceted processes at multiple levels. It is recognized that frailty and sarcopenia are shared by the major age-related diseases thus contributing to elderly morbidity and mortality. Pre-frailty is still not well understood but it has been associated with global imbalance in several physiological systems, including inflammation, and in nutrition. Due to the complex phenotypes and underlying pathophysiology, the need for robust and multidimensional biomarkers is essential to move toward more personalized care. The objective of the present study was to better characterize the complexity of pre-frailty phenotype using untargeted metabolomics, in order to identify specific biomarkers, and study their stability over time. The approach was based on the NU-AGE project (clinicaltrials.gov, NCT01754012) that regrouped 1,250 free-living elderly people (65–79 y.o., men and women), free of major diseases, recruited within five European centers. Half of the volunteers were randomly assigned to an intervention group (1-year Mediterranean type diet). Presence of frailty was assessed by the criteria proposed by Fried et al. (2001). In this study, a sub-cohort consisting in 212 subjects (pre-frail and non-frail) from the Italian and Polish centers were selected for untargeted serum metabolomics at T0 (baseline) and T1 (follow-up). Univariate statistical analyses were performed to identify discriminant metabolites regarding pre-frailty status. Predictive models were then built using linear logistic regression and ROC curve analyses were used to evaluate multivariate models. Metabolomics enabled to discriminate sub-phenotypes of pre-frailty both at the gender level and depending on the pre-frailty progression and reversibility. The best resulting models included four different metabolites for each gender. They showed very good prediction capacity with AUCs of 0.93 (95% CI = 0.87–1) and 0.94 (95% CI = 0.87–1) for men and women, respectively. Additionally, early and/or predictive markers of pre-frailty were identified for both genders and the gender specific models showed also good performance (three metabolites; AUC = 0.82; 95% CI = 0.72–0.93) for men and very good for women (three metabolites; AUC = 0.92; 95% CI = 0.86–0.99). These results open the door, through multivariate strategies, to a possibility of monitoring the disease progression over time at a very early stage

    Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis

    Get PDF
    In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms (\ue2\u80\u9cre-modeling\ue2\u80\u9d) that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota

    Mitochondrial DNA involvement in human longevity

    Get PDF
    AbstractThe main message of this review can be summarized as follows: aging and longevity, as complex traits having a significant genetic component, likely depend on a number of nuclear gene variants interacting with mtDNA variability both inherited and somatic. We reviewed the data available in the literature with particular attention to human longevity, and argued that what we hypothesize for aging and longevity could have a more general relevance and be extended to other age-related complex traits such as Alzheimer's and Parkinson's diseases. The genetics which emerges for complex traits, including aging and longevity, is thus even more complicated than previously thought, as epistatic interactions between nuclear gene polymorphisms and mtDNA variability (both somatic and inherited) as well as between mtDNA somatic mutations (tissue specific) and mtDNA inherited variants (haplogroups and sub-haplogroups) must be considered as additional players capable of explaining a part of the aging and longevity phenotype. To test this hypothesis is one of the main challenge in the genetics of aging and longevity in the next future

    Greenhouse gas emissions from the grassy outdoor run of organic broilers

    Get PDF
    Nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O), methane (CH&lt;sub&gt;4&lt;/sub&gt;) and carbon dioxide (CO&lt;sub&gt;2&lt;/sub&gt;) fluxes over the grassy outdoor run of organically grown broilers were monitored using static chambers over two production batches in contrasted seasons. Measured N&lt;sub&gt;2&lt;/sub&gt;O and CH&lt;sub&gt;4&lt;/sub&gt; fluxes were extremely variable in time and space for both batches, with fluxes ranging from a small uptake by soil to large emissions peaks, the latter of which always occurred in the chambers located closest to the broiler house. In general, fluxes decreased with increasing distance to the broiler house, demonstrating that the foraging of broilers and the amount of excreted nutrients (carbon, nitrogen) largely control the spatial variability of emissions. Spatial integration by kriging methods was carried out to provide representative fluxes on the outdoor run for each measurement day. Mechanistic relationships between plot-scale estimates and environmental conditions (soil temperature and water content) were calibrated in order to fill gaps between measurement days. Flux integration over the year 2010 showed that around 3 ± 1 kg N&lt;sub&gt;2&lt;/sub&gt;O-N ha&lt;sup&gt;−1&lt;/sup&gt; were emitted on the outdoor run, equivalent to 0.9% of outdoor N excretion and substantially lower than the IPCC default emission factor of 2%. By contrast, the outdoor run was found to be a net CH&lt;sub&gt;4&lt;/sub&gt; sink of about −0.56 kg CH&lt;sub&gt;4&lt;/sub&gt;-C ha&lt;sup&gt;−1&lt;/sup&gt;, though this sink compensated less than 1.5% (in CO&lt;sub&gt;2&lt;/sub&gt; equivalents) of N&lt;sub&gt;2&lt;/sub&gt;O emissions. The net greenhouse gas (GHG) budget of the outdoor run is explored, based on measured GHG fluxes and short-term (1.5 yr) variations in soil organic carbon
    • 

    corecore