144 research outputs found

    Genetic comparison of water molds from embryos of amphibians Rana cascadae, Bufo boreas and Pseudacris regilla

    Get PDF
    Water molds that cause the disease saprolegniasis have been implicated in widespread mortality of amphibian embryos. However, because of the limitations of traditional identification methods, water mold species involved in die-offs or utilized in ecological studies often remain unidentified or identified only as Saprolegnia ferax. Furthermore, water mold taxonomy requires revision, so very distinct organisms may all be called S. ferax. Recent DNA-based studies indicate that the diversity of water molds infecting amphibian embryos is significantly higher than what was previously known, but these studies rely on culture methods, which may be biased towards taxa that grow best under laboratory conditions. In this study, total embryo-associated DNA was extracted from 3 amphibian species in a pond in central Washington, USA. The internal transcribed spacer (ITS) region of DNA was amplified with primers capable of amplifying a broad array of eukaryotic microorgansisms, and was used to construct clone libraries. Individual clones were sequenced and relationships among newly recovered sequences and previously studied taxa were analyzed using phylogenetics. These methods recovered several new taxa in association with amphibian embryos. Samples grouped into 11 distinct phylotypes with ITS sequence differences ranging from 4 to 28%. The water mold communities recovered differed among Rana cascadae, Bufo boreas, and Pseudacris regilla egg masses. Furthermore, the diversity of water molds increased as egg masses aged, and members comprising this diversity changed over time

    Natural age dispersion arising from the analysis of broken crystals, part II. Practical application to apatite (U-Th)/He thermochronometry

    Get PDF
    We describe a new numerical inversion approach to deriving thermal history information from a range of naturally dispersed single grain apatite (U-Th)/He ages. The approach explicitly exploits the information about the shape of the 4He diffusion profile within individual grains that is inherent in the pattern of dispersion that arises from the common and routine practice of analysing broken crystals. Additional dispersion arising from differences in grain size and in U and Th concentration of grains, and the resultant changes to helium diffusivity caused by differential accumulation and annealing of radiation damage, is explicitly included. In this approach we calculate the ingrowth and loss, due to both thermal diffusion and the effects of α-ejection, of helium over time using a finite cylinder geometry. Broken grains are treated explicitly as fragments of an initially larger crystal. The initial grain lengths, L0, can be treated as unknown parameters to be estimated, although this is computationally demanding. A practical solution to the problem of solving for the unknown initial grain lengths is to simply apply a constant and sufficiently long L0 value to each fragment. We found that a good value for L0 was given by the maximum fragment length plus two times the maximum radius of a given set of fragments. Currently whole crystals and fragments with one termination are taken into account. A set of numerical experiments using synthetic fragment ages generated for increasingly complex thermal histories, and including realistic amounts of random noise (5-15%), are presented and show that useful thermal history information can be extracted from datasets showing very large dispersion. These include experiments where dispersion arises only from fragmentation of a single grain (length 400μm and radius 75μm, c. 6-50% dispersion), including the effects of grain size variation (for spherical equivalent grain radii between 74-122 μm, c. 10-70% dispersion) and the combined effects of fragmentation, grain size and radiation damage (for eU between 5-150 ppm, c.10-107% dispersion). Additionally we show that if the spherical equivalent radius of a broken grain is used as a measure of the effective diffusion domain for thermal history inversions then this will likely lead to erroneous thermal histories being obtained in many cases. The viability of the new technique is demonstrated for a real data set of 25 single grain (U-Th)/He apatite ages obtained for a gabbro sample from the BK-1 (Bierkraal) borehole drilled through the Bushveld Complex in South Africa. The inversion produces a well constrained thermal history consistent with both the (U-Th)/He data and available fission track analysis data. The advantage of the new approach is that it can explicitly accommodate all the details of conventional schemes, such as the effects of temporally variable diffusivity, zonation of U and Th and arbitrary grain size variations, and it works equally effectively for whole or broken crystals, and for the most common situation where a mixture of both are analysed. For the routine application of the apatite (U-Th)/He thermochronometry technique with samples where whole apatite grains are rare our experiments indicate that 15-20 single grain analyses are typically required to characterise the age dispersion pattern of a sample. The experiments also suggest that picking very short crystal fragments as well as long fragments, or even deliberately breaking long crystals to maximise the age dispersion in some cases, would ensure the best constraints on the thermal history models. The inversion strategy described in this paper is likely also directly applicable to other thermochronometers, such as the apatite, rutile and titanite U-Pb systems, where the diffusion domain is approximated by the physical grain size

    Rapid Invasion of Indo-Pacific Lionfishes (\u3cem\u3ePterois Volitans\u3c/em\u3e and \u3cem\u3ePterois Miles\u3c/em\u3e) in the Florida Keys, USA: Evidence from Multiple Pre- and Post-Invasion Data Sets

    Get PDF
    Over the past decade, Indo-Pacific lionfishes, Pterois volitans (Linnaeus, 1758) and Pterois miles (Bennett, 1828), venomous members of the scorpionfish family (Scorpaenidae), have invaded and spread throughout much of the tropical and subtropical northwestern Atlantic Ocean and Caribbean Sea. These species are generalist predators of fishes and invertebrates with the potential to disrupt the ecology of the invaded range. Lionfishes have been present in low numbers along the east coast of Florida since the 1980s, but were not reported in the Florida Keys until 2009. We document the appearance and rapid spread of lionfishes in the Florida Keys using multiple long-term data sets that include both pre- and post-invasion sampling. Our results are the first to quantify the invasion of lionfishes in a new area using multiple independent, ongoing monitoring data sets, two of which have explicit estimates of sampling effort. Between 2009 and 2011, lionfish frequency of occurrence, abundance, and biomass increased rapidly, increasing three- to six-fold between 2010 and 2011 alone. In addition, individuals were detected on a variety of reef and non-reef habitats throughout the Florida Keys. Because lionfish occurrence, abundance, and impacts are expected to continue to increase throughout the region, monitoring programs like those used in this study will be essential to document ecosystem changes that may result from this invasion

    Prevention, control, and elimination of neglected diseases in the Americas: Pathways to integrated, inter-programmatic, inter-sectoral action for health and development

    Get PDF
    BACKGROUND: In the Latin America and Caribbean region over 210 million people live below the poverty line. These impoverished and marginalized populations are heavily burdened with neglected communicable diseases. These diseases continue to enact a toll, not only on families and communities, but on the economically constrained countries themselves. DISCUSSION: As national public health priorities, neglected communicable diseases typically maintain a low profile and are often left out when public health agendas are formulated. While many of the neglected diseases do not directly cause high rates of mortality, they contribute to an enormous rate of morbidity and a drastic reduction in income for the most poverty-stricken families and communities. The persistence of this "vicious cycle" between poverty and poor health demonstrates the importance of linking the activities of the health sector with those of other sectors such as education, housing, water and sanitation, labor, public works, transportation, agriculture, industry, and economic development. SUMMARY: The purpose of this paper is three fold. First, it focuses on a need for integrated "pro-poor" approaches and policies to be developed in order to more adequately address the multi-faceted nature of neglected diseases. This represents a move away from traditional disease-centered approaches to a holistic approach that looks at the overarching causes and mechanisms that influence the health and well being of communities. The second objective of the paper outlines the need for a specific strategy for addressing these diseases and offers several programmatic entry points in the context of broad public health measures involving multiple sectors. Finally, the paper presents several current Pan American Health Organization and other institutional initiatives that already document the importance of integrated, inter-programmatic, and inter-sectoral approaches. They provide the framework for a renewed effort toward the efficient use of resources and the development of a comprehensive integrated solution to neglected communicable diseases found in the context of poverty, and tailored to the needs of local communities

    Florida Atlantic Coast Telemetry (FACT) Array: A Working Partnership

    Get PDF
    The Florida Atlantic Coast Telemetry (FACT) Array is a collaborative partnership of researchers from 24 different organizations using passive acoustic telemetry to document site fidelity, habitat preferences, seasonal migration patterns, and reproductive strategies of valuable sportfish, sharks, and marine turtles. FACT partners have found that by bundling resources, they can leverage a smaller investment to track highly mobile animals beyond a study area typically restrained in scale by funds and manpower. FACT is guided by several simple rules: use of the same type of equipment, locate receivers in areas that are beneficial to all researchers when feasible, maintain strong scientific ethics by recognizing that detection data on any receiver belongs to the tag owner, do not use other members detection data without permission and acknowledge FACT in publications. Partners have access to a network of 480 receivers deployed along a continuum of habitats from freshwater rivers to offshore reefs and covers 1100 km of coastline from the Dry Tortugas, Florida to South Carolina and extends to the Bahamas. Presently, 49 species, (25 covered by Fisheries Management Plans and five covered by the Endangered Species Act) have been tagged with 2736 tags in which 1767 tags are still active
    • …
    corecore