121 research outputs found

    A Time-Evolving 3D Method Dedicated to the Reconstruction of Solar plumes and Results Using Extreme Ultra-Violet Data

    Get PDF
    An important issue in the tomographic reconstruction of the solar poles is the relatively rapid evolution of the polar plumes. We demonstrate that it is possible to take into account this temporal evolution in the reconstruction. The difficulty of this problem comes from the fact that we want a 4D reconstruction (three spatial dimensions plus time) while we only have 3D data (2D images plus time). To overcome this difficulty, we introduce a model that describes polar plumes as stationary objects whose intensity varies homogeneously with time. This assumption can be physically justified if one accepts the stability of the magnetic structure. This model leads to a bilinear inverse problem. We describe how to extend linear inversion methods to these kinds of problems. Studies of simulations show the reliability of our method. Results for SOHO/EIT data show that we are able to estimate the temporal evolution of polar plumes in order to improve the reconstruction of the solar poles from only one point of view. We expect further improvements from STEREO/EUVI data when the two probes will be separated by about 60 degrees

    Comprehensive Determination of the Hinode/EIS Roll Angle

    Full text link
    We present a new coalignment method for the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft. In addition to the pointing offset and spacecraft jitter, this method determines the roll angle of the instrument, which has never been systematically measured, and is therefore usually not corrected. The optimal pointing for EIS is computed by maximizing the cross-correlations of the Fe XII 195.119 \r{A} line with images from the 193 \r{A} band of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). By coaligning 3336 rasters with high signal-to-noise ratio, we estimate the rotation angle between EIS and AIA and explore the distribution of its values. We report an average value of (-0.387 ±\pm 0.007)\deg. We also provide a software implementation of this method that can be used to coalign any EIS raster.Comment: Accepted for publication in Solar Physics, 11 pages, 7 figure

    The coronal monsoon : thermal nonequilibrium revealed by periodic coronal rain

    Get PDF
    P.A. has received funding from the UK Science and Technology Facilities Council (Consolidated Grant ST/K000950/1) and the European Union Horizon 2020 research and innovation programme (grant agreement No. 647214).We report on the discovery of periodic coronal rain in an off-limb sequence of Solar Dynamics Observatory/Atmospheric Imaging Assembly images. The showers are co-spatial and in phase with periodic (6.6 hr) intensity pulsations of coronal loops of the sort described by Auchère et al. and Froment et al. These new observations make possible a unified description of both phenomena. Coronal rain and periodic intensity pulsations of loops are two manifestations of the same physical process: evaporation/condensation cycles resulting from a state of thermal nonequilibrium. The fluctuations around coronal temperatures produce the intensity pulsations of loops, and rain falls along their legs if thermal runaway cools the periodic condensations down and below transition-region temperatures. This scenario is in line with the predictions of numerical models of quasi-steadily and footpoint heated loops. The presence of coronal rain—albeit non-periodic—in several other structures within the studied field of view implies that this type of heating is at play on a large scale.Publisher PDFPeer reviewe

    On the spectroscopic detection of periodic plasma flows in loops undergoing thermal non-equilibrium

    Full text link
    Context: Long-period intensity pulsations were recently detected in the EUV emission of coronal loops, and have been attributed to cycles of plasma evaporation and condensation driven by thermal non-equilibrium (TNE). Numerical simulations that reproduce this phenomenon also predict the formation of periodic flows of plasma at coronal temperatures along some of the pulsating loops. Aims: In this paper, we aim at detecting these predicted flows of coronal-temperature plasma in pulsating loops. Methods: To this end, we use time series of spatially resolved spectra from the EUV imaging spectrometer (EIS) onboard Hinode, and track the evolution of the Doppler velocity in loops in which intensity pulsations have previously been detected in images of SDO/AIA. Results: We measure signatures of flows that are compatible with the simulations, but only in a fraction of the observed events. We demonstrate that this low detection rate can be explained by line of sight ambiguities, combined with instrumental limitations such as low signal to noise ratio or insufficient cadence.Comment: Accepted for publication in A&A. 16 pages, 16 figure

    A statistical comparison of EUV brightenings observed by SO/EUI with simulated brightenings in nonpotential simulations

    Get PDF
    Open access funding provided by Swiss Federal Institute of Technology Zurich. L.H. and K.B. are grateful to the SNF for the funding of the project number 200021_188390. D.H.M. would like to thank the STFC for support via consolidated grant ST/W001195/1. K.A.M. would like to thank the STFC for support via consortium grant ST/W001098/1.The High Resolution Imager (HRIEUV) telescope of the Extreme Ultraviolet Imager (EUI) instrument onboard Solar Orbiter has observed EUV brightenings, so-called campfires, as fine-scale structures at coronal temperatures. The goal of this paper is to compare the basic geometrical (size, orientation) and physical (intensity, lifetime) properties of the EUV brightenings with regions of energy dissipation in a nonpotential coronal magnetic-field simulation. In the simulation, HMI line-of-sight magnetograms are used as input to drive the evolution of solar coronal magnetic fields and energy dissipation. We applied an automatic EUV-brightening detection method to EUV images obtained on 30 May 2020 by the HRIEUV telescope. We applied the same detection method to the simulated energy dissipation maps from the nonpotential simulation to detect simulated brightenings. We detected EUV brightenings with a density of 1.41×10−3 brightenings/Mm2 in the EUI observations and simulated brightenings between 2.76×10−2 – 4.14×10−2 brightenings/Mm2 in the simulation, for the same time range. Although significantly more brightenings were produced in the simulations, the results show similar distributions of the key geometrical and physical properties of the observed and simulated brightenings. We conclude that the nonpotential simulation can successfully reproduce statistically the characteristic properties of the EUV brightenings (typically with more than 85% similarity); only the duration of the events is significantly different between observations and simulation. Further investigations based on high-cadence and high-resolution magnetograms from Solar Orbiter are under consideration to improve the agreement between observation and simulation.Publisher PDFPeer reviewe

    The EUV Sun as the superposition of elementary Suns

    Get PDF
    International audienceAims. Many studies assume that the solar irradiance in the EUV can be decomposed into different contributions, which makes modelling the spectral variability considerably easier. We consider a different approach in which these contributions are not imposed a priori but effectively and robustly inferred from spectral irradiance measurements. Methods. This is a source separation problem with a positivity constraint, for which we use a Bayesian solution. Results. Using five years of daily EUV spectra recorded by the TIMED/SEE satellite, we show that the spectral irradiance can be decomposed into three elementary spectra. Our results suggest that they describe different layers of the solar atmosphere rather than specific regions. The temporal variability of these spectra is discussed
    • …
    corecore