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Solar PhysisDOI: 10.1007/•••••-•••-•••-••••-•A Time-Evolving 3D Method Dediated to theReonstrution of Solar Plumes and Results UsingExtreme Ultra-Violet DataNiolas Barbey∗† · Frédéri Auhère∗ ·Thomas Rodet† · Jean -Claude Vial∗Reeived: 9 May 2007 / Aepted: 24 January 2008© Springer ••••Abstrat An important issue in the tomographi reonstrution of the solar poles isthe relatively rapid evolution of the polar plumes. We demonstrate that it is possibleto take into aount this temporal evolution in the reonstrution. The di�ulty ofthis problem omes from the fat that we want a 4D reonstrution (three spatialdimensions plus time) while we only have 3D data (2D images plus time). To overomethis di�ulty, we introdue a model that desribes polar plumes as stationary objetswhose intensity varies homogeneously with time. This assumption an be physiallyjusti�ed if one aepts the stability of the magneti struture. This model leads to abilinear inverse problem. We desribe how to extend linear inversion methods to thesekinds of problems. Studies of simulations show the reliability of our method. Resultsfor SOHO/EIT data show that we are able to estimate the temporal evolution of polarplumes in order to improve the reonstrution of the solar poles from only one pointof view. We expet further improvements from STEREO/EUVI data when the twoprobes will be separated by about 60◦.1. IntrodutionA method known as solar rotational tomography has been used to retrieve the 3Dgeometry of the solar orona (Frazin 2000; Frazin and Janzen 2002). This methodassumes the stability of the strutures during the time neessary to aquire the data.Sine we generally have only one point of view at our disposal, about 15 days arerequired to have data for half a solar rotation at the poles. Here, we fous our studyon solar polar plumes. They are bright, radial, oronal ray strutures loated at thesolar poles in regions of open magneti �eld. The study of plumes is of great interestsine it may be the key to the understanding of the aeleration of the fast omponentof the solar wind (Teriaa et al., 2003). However the three-dimensional shape of thesestrutures is poorly known and di�erent assumptions have been made, e.g. Gabriel
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N. Barbey et al.et al., 2005; Llebaria, Saez, and Lamy, 2002. The plumes are known to evolve with aharateristi time of approximately 24 hours on spatial sales typial of Extreme ultra-violet Imaging Telesope (SOHO/EIT) data (2400 km) (DeForest, Lamy, and Llebaria,2001). Consequently the stability assumption made in rotational tomography fails.Fortunately, the Solar TErestrial RElations Observatory (STEREO) mission onsistsof two idential spaeraft STEREOA and STEREOB whih take pitures of the Sunfrom two di�erent points of view. With the SOHOmission still operating, this results inthree,simultaneous points of view. Three viewpoints help to improve the reonstrutionof the plumes, but they are still not enough to use standard tomographi algorithms.The problem is underdetermined and onsequently one has to add a priori informationin order to overome the lak of information. This leads to hallenging and innovativesignal analysis problems. There are di�erent ways to deal with underdeterminationdepending on the kind of objet to be reonstruted. Interestingly the �eld of medialimaging faes the same kind of issues. In ardia reonstrution, authors make use ofthe motion periodiity in assoiation with a high redundany of the data (Grass et al.,2003; Kahelriess, Ulzheimer, and Kalender, 2000). If one an model the motion as ana�ne transformation, and if one assumes that we know this transformation, one anobtain an analyti solution (Rithie et al., 1996; Roux et al., 2004).In solar tomography, the proposed innovative approahes involve the use of addi-tional data suh as magneti-�eld measurements in the photosphere (Wiegelmann andInhester, 2003) or data fusion (Frazin and Kamalabadi, 2005). Attempts have beenmade by Frazin et al. (2005) to treat temporal evolution using Kalman �ltering.Sine polar plumes have apparently a loal, rapid, and aperiodi temporal evolution,we developed as in the previously referened work, a model based on the spei�s ofthe objet we intend to reonstrut (preliminary results an be found in Barbey et al.,(2007). Plumes have an intensity whih evolves rapidly with time, but their positionan be onsidered as onstant. This hypothesis is on�rmed by previous studies of theplumes suh as DeForest, Lamy, and Llebaria (2001). The model is made up of aninvariant morphologial part (x) multiplied by a gain term (θt) that varies with time.Only one gain term is assoiated with eah plume in order to onstrain the model.So we assume that the position of eah plume in the sene is known. This model isjusti�ed if we onsider polar plumes to be slowly evolving magneti strutures in whihplasma �ows.Thanks to this model we an perform time-evolving three-dimensional tomographyof the solar orona using only extreme ultra-violet images. Furthermore, there is noomplex, underlying physial model. The only assumptions are the smoothness of thesolution, the area-dependant evolution model, and the knowledge of the plume position.These assumptions allow us to onsider a temporal variation of a few days, whileassuming only temporal smoothness would limit variations to the order of one solarrotation (about 27 days). To our knowledge, the estimation of the temporal evolutionhas never been undertaken in tomographi reonstrution of the solar orona.We �rst explain our reonstrution method in a Bayesian framework (Setion 2). Wethen test the validity of our algorithm with simulated data (Setion 3). An example ofa reonstrution on real SOHO/EIT data is shown in Setion 4. Results are disussedin Setion 5. We onlude in Setion 6.
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar Plumes

Figure 1. Sheme of the data aquisition geometry. (O; x, y, z) de�nes the Carrington helio-entri frame of referene. S is the spaeraft onsidered. φ is the latitude, and θ the longitudeof this spaeraft. V is the virtual detetor.2. MethodTomographi reonstrution an be seen as an inverse problem, the diret problembeing the aquisition of data images knowing the emission volume density of the objet(Setion 2.1). If the objet is evolving during the data aquisition, the inverse problemis highly underdetermined. So our �rst step is to rede�ne the diret problem thanks toa reparametrization, in order to be able to de�ne more onstraints (Setion 2.2). Then,we plae ourselves in the Bayesian inferene framework in whih data and unknownsare onsidered to be random variables. The solution of the inverse problem is hosen tobe the maximum a posteriori (Setion 2.3). This leads to a riterion that we minimizewith an alternate optimization algorithm (Setion 2.4).2.1. Diret ProblemThe geometrial aquisition is mathematially equivalent to a onial beam data aqui-sition with a virtual spherial detetor (see Figure 1). In other words, the step betweentwo pixels vertially and horizontally is onstant in angle. The angle of the full �eldof view is around 45 minutes. In order to obtain an aurate reonstrution, we takeinto aount the exat geometry, whih means the exat position and orientation ofthe spaeraft relatively to Sun enter. We approximate integration of the emission ina �ux tube related to a pixel by an integration along the line of sight going throughthe middle of that pixel. We hoose to disretize the objet in the usual ubi voxels.
x is a vetor of size N ontaining the values of all voxels. In the same way, we de�nethe vetor of data yt of size M at time t. Sine the integration operator is linear, theprojetion an be desribed by a matrix Pt. We hoose nt to be an additive noise:

yt = Ptxt + nt, ∀t ∈ [1, ..., T ] (1)
Pt is the projetion matrix at time t of size M×N whih is de�ned by the position andthe orientation of the spaeraft at this time. Its transpose is the bakprojetion matrix.Note that a uniform sampling in time is not required. In order to be able to handlelarge problems with numerous well-resolved data images and a large reonstrutionube, we hose not to store the whole projetion matrix. Instead, we perform theprojetion operation (Px) or its transpose eah time it is needed at eah iteration.
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N. Barbey et al.Thus, we need a very e�ient algorithm. We developed a ode written in C whihperforms the projetion operation. It makes use of the geometrial parameters given inthe data headers in order to take into aount the exat geometry (oniity, position,and orientation of the spaeraft). To keep this operation fast, we implemented theSiddon algorithm (Siddon, 1985). It allows a fast projetion or bakprojetion in thease of ubi voxels (Cartesian grid). Sine we fous on a small region at the poles,we onsider that we do not need to use a spherial grid whih would require a moretime-onsuming projetion algorithm.We take into aount the fat that the �eld of view is onial. Despite the fatthat the aquisition is very lose to the parallel aquisition geometry, it is su�ient tointrodue an error of several voxels of size 0.01 solar radius from one side to the otherof a three solar radii reonstruted ube.2.2. Modeling of the Temporal EvolutionWith this model, the inverse problem is underdetermined sine we have at most threeimages at one time and we want to reonstrut the objet with its temporal evolution.In order to do so, we �rst rede�ne our unknowns to separate temporal evolution fromspatial struture. We introdue a new set of variables gt of size N desribing thetemporal evolution and require that x does not depend on time:
yt = Pt(x ◦ gt) + nt (2)with ◦ being the term-by-term multipliation of vetors. This operator is learly bi-linear. However, this model would inrease the number of variables exessively. So, weneed to introdue some other kind of a priori into our model. We make the hypothesisthat all of the voxels of one polar plume have the same temporal evolution:

gt = Lθt (3)The matrix L of size N × P (P being the number of areas) loalizes areas where thetemporal evolution is idential. Eah olumn of L is the support funtion of one ofthe plumes. We would like to stress that in our hypothesis, those areas do not moverelative to the objet. In other words, L does not depend on time. Loalizing theseareas de�nes L and only leaves P T variables to estimate. We rede�ned our problem ina way that limits the number of parameters to estimate but still allows many solutions.Furthermore, the problem is linear in x knowing θ and linear in θ knowing x. It willsimplify the inversion of the problem as we shall see later. Note, however that theuniqueness of a solution (x,θ) is not guaranteed with bilinearity despite its beingguaranteed in the linear ase. This example shows that A an be hosen arbitrarilywithout hanging the loseness to the data: x ◦ g = (Ax) ◦ (A−1g), where A is areal onstant. Introduing an a priori of loseness to 1 for θ would allow us to dealwith this indeterminay in priniple. But note that this indeterminay is not ritialsine the physial quantity of interest is only the produt x ◦ g. Féron, Duhêne, andMohammad-Djafari (2005) present a method whih solves a bilinear inversion problemin the ontext of mirowave tomography.We do not deal with the estimation of the areas undergoing evolution, but we assumein this paper that the loalization is known. This loalization an be ahieved usingother soures of information, e.g. stereosopi observations. We expet to be able toloate the areas using some other soure of information.
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar PlumesWe an regroup the equations of the diret problem. We have two ways to do so,eah emphasizing the linearity throughout one set of variables.
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(4)with X = diag(x), the diagonal matrix de�ned by x. x is of size N , y and n are ofsize M T , θ is of size P T and Ux is of size M T × P T .Similarly,
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(5)with Id the identity matrix of size M × M . Vθ is of size MT × N .2.3. Inverse ProblemIn Bayes' formalism, solving an inverse problem onsists in knowing the a posteriori(the onditional probability density funtion of the parameters, the data being given).To do so we need to know the likelihood (the onditional probability density funtionof the data knowing the parameters) and the a priori (the probability density fun-tion of the parameters). An appropriate model is a Gaussian, independent, identiallydistributed (with the same variane) noise n. The likelihood funtion is dedued fromthe noise statisti:
f(y|x,θ, σn,M) = K1 exp

(

−
‖y − Uxθ‖2

2σ2
n

) (6)
M = [P ,L] desribing our model (the projetion algorithm and parameters and thehoie of the plume position). We assume that the solution is smooth spatially andtemporally, so we write the a priori as follows:

f(x|σx) = K2 exp

(

−
‖Drx‖

2

2σ2
x

) and f(θ|σθ) = K3 exp

(

−
‖Dtθ‖

2

2σ2
θ

) (7)
Dr and Dt are disrete di�erential operators in spae and time. Bayes' theorem givesus the a posteriori law if we assume that the model M is known as well as thehyperparameters H = [σn, σx, σθ ]:

f(x,θ|y,H,M) =
f(y|x,θ, σn,M)f(x|σx)f(θ|σθ)

f(y|H,M)
(8)We need to hoose an estimator. It allows us to de�ne a unique solution instead ofhaving a whole probability density funtion. We then hoose to de�ne our solution asthe maximum a posteriori. whih is given by:

(xMAP, θMAP) = arg max
x,θ

f(y|x,θ, σn,M)f(x|σx)f(θ|σθ) (9)
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N. Barbey et al.sine f(y|M) is a onstant. Equation (9) an be rewritten as a minimization problem:
(xMAP, θMAP) = argmin

x,θ

J(x,θ) (10)with:
J(x,θ) = −2σn log f(x,θ|y,M,H) = ‖y − Uxθ‖2 + λ‖Drx‖

2 + µ‖Dtθ‖
2 (11)

λ =
σ2

n

σ2
x

and µ =
σ2

n

σ2
α

are user-de�ned hyperparameters.The equivalene of Equations (9) and (10) has been proved by Demoment (1989).Note that the solution does not have to be very smooth. It mostly depends on thelevel of noise sine noise inreases the underdetermination of the problem as it hasbeen shown by the de�nition of λ and µ.2.4. Criterion MinimizationThe two sets of variables x and θ are very di�erent in nature. However, thanks tothe problem's bilinearity, one an easily estimate one set while the other is �xed.Consequently we perform an iterative minimization of the riterion, and we alternateminimization of x and θ. At eah step n we perform:
θ

n+1 = argmin
θ

J(xn
, θ) and x

n+1 = arg min
x

J(x,θ
n+1) (12)The two subproblems are formally idential. However, θ is muh smaller than x.This is of the utmost pratial importane sine one an diretly �nd the solution on

θ by using the pseudo-inverse method. x is too big for this method, and we have touse an iterative sheme suh as the onjugate-gradient to approximate the minimum.These standard methods are detailed in Appendies A and B.2.5. Desent Diretion De�nition and Stop ThresholdWe hoose to use an approximation of the onjugate-gradient method that is known toonverge muh more rapidly than the simple gradient method (Noedal and Wright,2000; Polak and Ribière, 1969).
dp+1 = dp + bp∇x J |

x=xp

bp =
〈∇x J|

x=x
p ,∇x J|

x=x
p−1〉

‖∇x J|
x=x

p−1‖2

(13)Sine the minimum is only approximately found, we need to de�ne a threshold whihwe onsider to orrespond to an appropriate loseness to the data in order to stop theiterations. Sine the solution is the point at whih the gradient is zero, we hoose thisthreshold for updating x:meanx∈[xp,xp−1,xp−2]‖∇xJ‖2
< Sx (14)For the global minimization, the gradient is not omputed, so we hoose:mean[n,n−1,n−2]‖(xn, θn) − (xn−1, θn−1) ‖2

< SG (15)Note that this way to stop the iteration allows one to de�ne how lose one wants tobe to the solution: if the di�erene between two steps is below this threshold, it isonsidered negligible. The algorithm an be summarized as shown in Figure 2.
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar Plumesinitialize : x = 0 and θ = 1while Equation (15) is satis�ed
x minimization:while Equation (14) is satis�ed

∗ ompute gradient at xn with Equation (20)
∗ ompute desent diretion with Equation (13)
∗ ompute optimum step with Equation (22)
∗ update x with Equation (23)endwhile

θ minimization:
∗ ompute the matrix UT

xnUxn and the vetor UT
xny

∗ inverse the matrix UT
xnUxn + µDT

r Dr

∗ ompute Equation (19)endwhileFigure 2. Tomographi Reonstrution with Temporal Evolution Algorithm3. Method ValidationIn order to validate the priniple of our method and test its limits, we simulate anobjet ontaining some plumes with temporal evolution and try to extrat it from thedata.3.1. Simulation Generation ProessWe generate an emission ube with randomly-plaed, ellipsoidal plumes with a Gaus-sian shape along eah axis:
Ep = A exp

(

−
1

2

[

r.uφ)

a

]2

−
1

2

[r.uφ+π

2

b

]2
) (16)The plumes evolve randomly but smoothly by interpolating over a few randomly gen-erated points. One the objet is generated, we ompute a typial set of 60 imagesequally spaed along 180◦ using our projetor algorithm. A Gaussian random noiseis added to the projetions with a signal to noise ratio (SNR) of �ve. The simulationparameters are summarized in Table 1.Table 1. Simulation De�nition: Plumes ParametersPlume Semimajor Semiminor φ x0 y0 IntensityNumber Axis a Axis b (A)1 4.8 4.2 1.2 29 29 3292 5.6 3.3 1.1 23 33 4303 5.2 4.8 0.1 40 42 723

barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.7



N. Barbey et al.Table 2. Simulation De�nition: Geometri Parametersube size ube number pixel projetion(solar radii) of voxels size (radians) number of pixels
1 × 1 × 0.05 64 × 64 × 4 5 × 10−5 × 5 × 10−5 128 × 8Table 3. Simulation De�nition: Other ParametersSNR λ µ Sx SG

5 2 × 10−2 100 2 × 10−2 1 × 10−23.2. Results AnalysisWe now ompare our results (Figure 3) with a �ltered bak-projetion (FBP) algorithm.This method is explained by Natterer (1986) and Kak and Slaney (1987).By omparing the simulation and the reonstrution in Figure 3, we an see thequality of the temporal evolution estimation. The shape of the intensity urves is wellreprodued exept for the �rst plume in the �rst ten time steps where the intensity isslightly underestimated. This orresponds to a period when plume 1 is hidden behindplume 2. Thus, our algorithm attributes part of the plume 1 intensity to plume 2.Let us note that this kind of ambiguity will not arise in the ase of observations frommultiple points of view suh as STEREO/EUVI observations. The indeterminay ofthe problem is due to its bilinearity disussed in Setion 2.2. This allows the algorithmto attribute larger values to the θ parameters and to ompensate by dereasing theorresponding x. This is not a drawbak of the method sine it allows disontinuitiesbetween plumes and interplumes. The only physial value of interest is the produt
x ◦ g.Figure 4 shows the relative intensity of the plumes at di�erent times. One anompare with the reonstrution. One way to quantify the quality of the reonstrutionis to ompute the distane (quadrati norm of the di�erene) between the real objetand the reonstruted one. Sine the FBP reonstrution does not atually orrespondto a reonstrution at one time, we evaluate the minimum of the distanes at eah time.We �nd it to be 3000. This is to be ompared with a value of 700 with our algorithm,whih is muh better.3.3. Choie of Evolution AreasOne an think that the hoie of the evolution areas is ritial to the good performaneof our method. We show in this setion that it is not neessarily the ase by performinga reonstrution based on simulations with inorret evolution areas. All parametersand data are exatly the same as in the previous reonstrution. The only di�erene isin the hoie of the areas, i.e. the L matrix. These are now de�ned as shown in Figure5(a).Although approximately 50 % of the voxels are not assoiated with their orret area,we an observe that the algorithm still performs well. The emission map of Figure 5(b)
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar Plumes
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z = 0.1 R⊙. Emission densities (arbitrary units) are saled in the olor bars in the right-endside of (a), (b), ().
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(a) New hoie of areas (b) x with our algorithm () θ with our algorithmFigure 5. Reonstrution with smaller areas. To be ompared with Figure 3. The new areas(a) do not orrespond anymore to the ones used to generate the data. (b) is the emission mapand () the temporal evolution estimated with our algorithm. (b) and () are slies of 3D ubesat the same z = 0.1 R⊙. Emission densities (arbitrary units) are saled in the olor bars in theright-end side of (b).is still better than the emission reonstruted by a FBP method. Plus, the estimationof the temporal evolution in Figure 5() orresponds to the true evolution 3(e) even ifless preisely than in Figure 3(f).4. Reonstrution of SOHO/EIT Data4.1. Data PreproessingWe now perform reonstrution using SOHO/EIT data. We have to be areful whenapplying our algorithm to real data. Some problems may arise due to phenomena nottaken into aount in our model; e.g. osmi rays, or missing data.Some of these problems an be handled with simple preproessing. We onsiderpixels hit by osmi rays as missing data. They are deteted with a median �lter.These pixels and missing bloks are labeled as missing data and the projetor andthe bakprojetor do not take them into aount (i.e. the orresponding rows in thematries are removed).4.2. Results AnalysisIn Figures 6 and 7, we present results from 17.1 nm EIT data between 1 and 14November 1996. This period orresponds to the minimum of solar ativity when one anexpet to have less temporal evolution. 17.1 nm is the wavelength where the ontrastof the plumes is the strongest. Some images are removed resulting in a sequene of 57irregularly-spaed projetions for a total overage of 191◦. We assume that we knowthe position of four evolving plumes as shown on Figure 6(b). For eah reonstrutedimage, we present subareas of the reonstruted ube of size 64×64 entered on the axisof rotation. We assume the rotation speed to be the rigid body Carrington rotation.All of the parameters given in Table 4 and 5 are shared by the di�erent algorithmsprovided they are required by the method. The omputation of this reonstrution ona Intel(R) Pentium(R) 4 CPU 3.00 GHz was 13.5 hours long.Presene of negative values is the indiation of a poor behavior of the tomographialgorithm sine it does not orrespond to atual physial values. We an see in Figure6 that our reonstrution has many fewer negative values in the x map than the FBP
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(e) θt with our algorithm.Figure 6. A omparison of FBP (a), a gradient-like algorithm without temporal evolution (),and our algorithm (d) with real EIT data. x is the spatial distribution of the volume emissiondensity integrated over EIT 17.1 nm passband. The hosen areas are shown in (b). θ is a gainrepresenting the emission variation during time (e). The time sale is in days. In the ase ofour algorithm, only the produt x ◦ θ has physial meaning. The spatial sales are given insolar radii and entered on the solar axis of rotation. (a), (b), (), and (d) are slies of 3Dubes at the same z = 1.3R⊙. Emission densities (arbitrary units) are saled in the olor barsin the right-end side of (a), (), (d).
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N. Barbey et al.Table 4. EIT Data Reonstrution: Geometri Parametersube size ube number pixel projetion(solar radii) of voxels size (radians) number of pixels
3 × 3 × 0.15 256 × 256 × 8 2.55 × 10−5 × 2.55 × 10−5 512 × 38Table 5. EIT Data Reonstrution: Other Parameters

λ µ Sx SG

2 × 10−2 1 × 104 0.1 0.05reonstrution. In the FBP reonstrution ube, 50% of the voxels have negative values;in the gradient-like reonstrution without temporal evolution 36% of the voxels arenegative while in our reonstrution only 25 % are negative. This still seems like a lotbut most of these voxels are in the outer part of the reonstruted ube. The averagevalue of the negative voxels is muh smaller also. It is -120 for the FBP, -52 for thegradient-like method without temporal evolution, and only -19 for our reonstrutionwith temporal evolution. However, we notie that the gain oe�ients present a fewslightly negative values.In the reonstrutions without temporal evolution, plumes three (upper right) andfour (lower right) orrespond to a unique elongated struture whih we hoose to divide.Note how our algorithm updated the x map reduing the emission values between thesetwo plumes. It shows that what was seen as a unique struture was an artifat resultingfrom temporal evolution and it tends to validate the usefulness of our model. Wenote the disappearane of a plume loated around (-0.2, -0.15) solar radii on the FBPreonstrution. It shows the utility of gradient-like methods to get rid of artifats due tothe non-uniform distribution of images. Another plume at (0.2, 0.2) solar radii has moreintensity in the reonstrution without temporal evolution than with our algorithm. Itillustrates how temporal evolution an in�uene the spatial reonstrution.
x axis in solar radii

y 
ax

is
 in

 s
ol

ar
 r

ad
ii

 

 

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

500

1000

1500

2000

2500

x axis in solar radii

y 
ax

is
 in

 s
ol

ar
 r

ad
ii

 

 

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

500

1000

1500

2000

2500

x axis in solar radii

y 
ax

is
 in

 s
ol

ar
 r

ad
ii

 

 

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0

500

1000

1500

2000

2500

(a) Reonstrution at t25 (b) Reonstrution at t35 () Reonstrution at t45(6 days) (8.5 days) (9.8 days)Figure 7. Reonstrution of x ◦ g at di�erent times. Distanes are in solar radii. Valuesrepresent the volume emission density integrated over the EIT 17.1 nm passband. All of theseimages are slies of 3D ubes at the same z = 1.3 R⊙.
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar Plumes5. DisussionThe major feature of our approah is the quality of our reonstrution, whih is muhimproved with respet to FBP reonstrution, as demonstrated by the smaller numberof negative values and the inreased loseness to the data. Let us now disuss thevarious assumptions that have been made through the di�erent steps of the method.The strongest assumption we made, in order to estimate the temporal evolution ofpolar plumes, is the knowledge of the plume position. Here, we hoose to de�ne theplumes as being the brightest points in a reonstrution without temporal evolution.The hoie is not based on any kind of automati threshold. The areas are entirelyhand-hosen by looking at a reonstrution. It is possible that these areas do notorrespond to the atual physial plumes, they ould orrespond to areas presentinginreased emission during half a rotation. Note that this is biased in favor of plumesloser to the axis of rotation sine, along one slie of the reonstruted artesian ube,their altitude is lower and thus, their intensity is higher. In order to have onstantaltitude maps one would have to arry out the omputation on a spherial grid or tointerpolate afterwards onto suh a grid. For this reonstrution example we are awarethat we did not loate all of the plumes but only tried to �nd a few. It would beinteresting to try to loate the plumes using other data or with a method estimatingtheir positions and shapes.The method involves hyperparameters whih we hoose to set manually. There aremethods to estimate hyperparameters automatially suh as the L-urve method, theross-validation method (Golub, Heath, and Wahba, 1979) or the full-bayesian method(Higdon et al., 1997; Champagnat, Goussard, and Idier, 1996). We performed reon-strutions using di�erent hyperparameter values. We then looked at the reonstrutionto see if the smoothness seemed exaggerated or if the noise were ampli�ed in the results.This allowed us to redue the omputational ost and does not really put the validityof the method into question.One possible issue with this algorithm is the non-onvexity of our riterion. This anlead to the onvergene to a loal minimum that does not orrespond to the desiredsolution de�ned as the global minimum of the riterion. One way to test this would beto hange the initialization many times.We hose the speed of rotation of the poles to be the Carrington rotation speed. Butthe speed of the polar strutures has not been measured preisely to our knowledge andould a�et drastially the reonstrution. This is an issue shared by all tomographireonstrutions of the Sun.In the urrent approah, we need to hoose on our own the position of the time-evolving areas whih are assumed to be plumes. This is done by assuming that moreintense areas of a reonstrution without temporal evolution orrespond to plumepositions. A more rigorous way would be to try to use other soures of informationto try to loalize the plumes. Another, self-onsistent way, would be to develop amethod that jointly estimates the position of the plumes in addition to the emission(x) and the time evolution (θ). We ould try to use the results of Yu and Fessler (2002)who propose an original approah in order to reonstrut a piee-wise homogeneousobjet while preserving edges. The minimization is alternated between an intensitymap and boundary urves. The estimation of the boundary urves is made using levelsets tehnis ((Yu and Fessler, 2002) and referenes therein). It would also be possibleto use a Gaussian mixture model (Snoussi and Mohammad-Djafari, 2007).
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N. Barbey et al.6. ConlusionWe have desribed a method that takes into aount the temporal evolution of polarplumes for tomographi reonstrution near the solar poles. A simple reonstrutionbased on simulations demonstrates the feasibility of the method and its e�ieny inestimating the temporal evolution assuming that parameters suh as plume position orrotation speed are known. Finally we show that it is possible to estimate the temporalevolution of the polar plumes with real data.In this study we limited ourselves to reonstrution of images at 17.1 nm but one anperform reonstrutions at 19.5 nm and 28.4 nm as well. It would allow us to estimatethe temperatures of the eletrons as in Frazin, Kamalabadi, and Weber (2005) orBarbey et al. (2006).Aknowledgements Niolas Barbey aknowledges the support of the Centre Nationald'Études Spatiales and the Collete Loalisation Satellites. The authors thank the referee fortheir useful suggestions for the artile.AppendixA. Pseudo-Inverse MinimizationWe want to minimize:
J = ‖y − Uxnθ‖2 + λ‖Drx

n‖2 + µ‖Dtθ‖
2 (17)The seond term does not depend on θ. Due to the strit onvexity of the riterion,the solution is a zero of the gradient. Sine the riterion is quadrati, one an expliitlydetermine the solution:

∇θJ |
θ=θn+1 = 2U

T
xn

(

Uxnθ
n+1 − y

)

+ 2µD
T
t Dtθ

n+1 = 0 (18)from whih we onlude:
θ

n+1 =
[

U
T
xnUxn + µD

T
t Dt

]−1

U
T
xny (19)B. Gradient-like MethodIn this method we try to �nd an approximation of the minimum by dereasing the rite-rion iteratively. The problem is divided in two subproblems: searhing for the diretionand searhing for the step of the desent. In gradient-like methods, the onvergene isgenerally guaranteed ultimately to a loal minimum. But sine the riterion is onvex,the minimum is global. To iterate, we start at an arbitrary point (x0) and go along adiretion related to the gradient. The gradient at the pth step is:

∇xJ |
x=xp = 2V

T
θn+1 (Vθn+1x

p − y) + 2λD
T
r Drx

p (20)
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A Time-Evolving 3D Method Dediated to the Reonstrution of Solar PlumesOne the diretion is hosen, searhing for the optimum step is a linear minimizationproblem of one variable:
a

p+1OPT = argmin
a

J(xp + ad
p+1) (21)whih is solved by:

a
p+1OPT = −

1

2

dp+1 ∇xJ |
x=xp

‖Vθn+1dp+1‖2 + λ‖Drdp+1‖2
(22)We an write the iteration:

x
p+1 = x

p + a
p+1OPTdp+1 (23)ReferenesBarbey, N., Auhére, F., Rodet, T., Bohialini, K., Vial, J.C.: 2006, Rotational Tomog-raphy of the Solar Corona-Calulation of the Eletron Density and Temperature. In:Laoste, H. (ed.) SOHO 17 - 10 Years of SOHO and Beyond. ESA Speial Publiations.ESA Publiations Division, Noordwijk, 66 � 68.Barbey, N., Auhère, F., Rodet, T., Vial, .J.C.: 2007, Reonstrution Tomographique deSéquenes d'Images 3D - Appliation aux Données SOHO/STEREO. In: Ates de GRETSI2007., 709 � 712.Champagnat, F., Goussard, Y., Idier, J.: 1996, Unsupervised deonvolution of sparse spiketrains using stohasti approximation. IEEE Transations on Signal Proessing 44(12),2988 � 2998.DeForest, C.E., Lamy, P.L., Llebaria, A.: 2001, Solar Polar Plume Lifetime and Coronal HoleExpansion: Determination from Long-Term Observations. Astrophys. J. 560, 490 � 498.Demoment, G.: 1989, Image reonstrution and restoration: Overview of ommon estimationstruture and problems. IEEE Transations on Aoustis, Speeh and Signal Proessing37(12), 2024 � 2036.Féron, O., Duhêne, B., Mohammad-Djafari, A.: 2005, Mirowave imaging of inhomogeneousobjets made of a �nite number of dieletri and ondutive materials from experimentaldata. Inverse Problems 21(6), S95 � S115.Frazin, R.A.: 2000, Tomography of the Solar Corona. I. A Robust, Regularized, PositiveEstimation Method. Astrophys. J. 530, 1026 � 1035.Frazin, R.A., Butala, M.D., Kemball, A., Kamalabadi, F.: 2005, Time-dependent Reon-strution of Nonstationary Objets with Tomographi or Interferometri Measurements.Astrophys. J. 635(2), L197 � L200.Frazin, R.A., Janzen, P.: 2002, Tomography of the Solar Corona. II. Robust, Regularized,Positive Estimation of the Three-dimensional Eletron Density Distribution from LASCO-C2 Polarized White-Light Images. Astrophys. J. 570, 408 � 422.Frazin, R.A., Kamalabadi, F.: 2005, Rotational Tomography For 3D Reonstrution Of TheWhite-Light And Euv Corona In The Post-SOHO Era. Solar Phys. 228, 219 � 237.Frazin, R.A., Kamalabadi, F., Weber, M.A.: 2005, On the Combination of Di�erential EmissionMeasure Analysis and Rotational Tomography for Three-dimensional Solar EUV Imaging.Astrophys. J. 628, 1070 � 1080.Gabriel, A.H., Abbo, L., Bely-Dubau, F., Llebaria, A., Antonui, E.: 2005, Solar Wind Out�owin Polar Plumes from 1.05 to 2.4 Rsolar. Astrophys. J. 635, L185 � L188.Golub, G.H., Heath, M., Wahba, G.: 1979, Generalized ross-validation as a method forhoosing a good ridge parameter. Tehnometris 21(2), 215 � 223.Grass, M., Manzke, R., Nielsen, T., KoKen, P., Proksa, R., Natanzon, M., Shehter, G.: 2003,Helial ardia one beam reonstrution using retrospetive ECG gating. Phys. Med. Biol.48, 3069 � 3083.Higdon, D.M., Bowsher, J.E., Johnson, V.E., Turkington, T.G., Gilland, D.R., Jaszzak, R.J.:1997, Fully Bayesian estimation of Gibbs hyperparameters for emission omputed tomog-raphy data. IEEE Transations on Medial Imaging 16(5), 516 � 526.

barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.15



N. Barbey et al.Kahelriess, M., Ulzheimer, S., Kalender, W.: 2000, ECG-orrelated imaging of the heart withsubseond multislie spiral CT. IEEE Transations on Medial Imaging 19(9), 888 � 901.Kak, A.C., Slaney, M.: 1987, Priniples of omputerized tomographi imaging. IEEE Press,New York.Llebaria, A., Saez, F., Lamy, P.: 2002, The fratal nature of the polar plumes. In: Wilson, A.(ed.) ESA SP-508: From Solar Min to Max: Half a Solar Cyle with SOHO., 391 � 394.Natterer, F.: 1986, The Mathematis of Computerized Tomography. John Wiley.Noedal, J., Wright, S.J.: 2000, Numerial optimization. Series in Operations Researh.Springer Verlag, New York.Polak, E., Ribière, G.: 1969, Note sur la onvergene de méthodes de diretions onjuguées.Rev. Française d'Informatique Reh. Opérationnelle 16, 35 � 43.Rithie, C.J., Crawford, C.R., Godwin, J.D., King, K.F., Kim, Y.: 1996, Corretion of om-puted tomography motion artifats using pixel-spei� bakprojetion. IEEE Med. Imag.15(3), 333 � 342.Roux, S., Debat, L., Koenig, A., Grangeat, P.: 2004, Exat reonstrution in 2d dynami CT:ompensation of time-dependent a�ne deformations. Phys. Med. Biol. 49(11), 2169 � 2182.Siddon, R.L.: 1985, Fast alulation of the exat radiologial path for a three-dimensional CTarray. Medial Physis 12, 252 � 255.Snoussi, H., Mohammad-Djafari, A.: 2007, Estimation of strutured Gaussian mixtures: theinverse EM algorithm. IEEE Trans. on Signal Proessing 55(7), 3185 � 3191.Teriaa, L., Poletto, G., Romoli, M., Bieseker, D.A.: 2003, The Nasent Solar Wind: Originand Aeleration. Astrophys. J. 588, 566 � 577.Wiegelmann, T., Inhester, B.: 2003, Magneti modeling and tomography: First steps towardsa onsistent reonstrution of the solar orona. Solar Physis 214, 287 � 312.Yu, D., Fessler, J.: 2002, Edge-preserving tomographi reonstrution with nonloal regular-ization. IEEE Med. Imag. 21, 159 � 173.

barbey_SPfullpaper.tex; 1/02/2008; 13:36; p.16


