39 research outputs found

    Coupling growth and mortality models to detect climate drivers of tropical forest dynamics

    Full text link
    Climate models for the coming century predict rainfall reduction in the Amazonian region, including deep changes in water availability for tropical rainforests. Here, we develop an integrated modeling framework in order test the extent to which climate variables related to water regime, temperature and irradiance shape the long-term dynamics of neotropical forests. In a first step, a Bayesian hierarchical model was built to couple tree growth and tree mortality processes into a single modeling framework. Coupling a longitudinal growth model with a punctual mortality model was not an easy task. Past growth, related to the expected growth, was used as an indicator of the individual tree vigor, which is supposed to play a key role in the mortality process. A MCMC approach is used to estimate all the parameters simultaneously. The individual-centered model was explicitly designed to deal with diverse sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Functional traits are integrated as proxies of the ecological strategies of the trees and permit generalization among all species in the forest community. Data used to parameterize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been yearly censured over 18 years. Climate covariates were finally added as external drivers of the forest dynamics. These drivers are selected in a list of climate variables for which future predictions are available thanks to the IPCC scenario. Amongst climate variables, we highlight the predominant role of water availability in determining interannual variation in the dynamic of neotropical forests. And we stressed the need to include these relationships into forest simulators to test, in silico, the impact of different climate scenarios on the future dynamics of the rainforest. (Texte intégral

    Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    Get PDF
    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent

    The response of tropical rainforests to drought : lessons from recent research and future prospects

    Get PDF
    Key message: we review the recent findings on the influence of drought on tree mortality, growth or ecosystem functioning in tropical rainforests. Drought plays a major role in shaping tropical rainforests and the response mechanisms are highly diverse and complex. The numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical rainforests on the three continents. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance. - Context: tropical rainforest ecosystems are characterized by high annual rainfall. Nevertheless, rainfall regularly fluctuates during the year and seasonal soil droughts do occur. Over the past decades, a number of extreme droughts have hit tropical rainforests, not only in Amazonia but also in Asia and Africa. The influence of drought events on tree mortality and growth or on ecosystem functioning (carbon and water fluxes) in tropical rainforest ecosystems has been studied intensively, but the response mechanisms are complex.- Aims: herein, we review the recent findings related to the response of tropical forest ecosystems to seasonal and extreme droughts and the current knowledge about the future of these ecosystems. - Results: this review emphasizes the progress made over recent years and the importance of the studies conducted under extreme drought conditions or in through-fall exclusion experiments in understanding the response of these ecosystems. It also points to the great diversity and complexity of the response of tropical rainforest ecosystems to drought. - Conclusion: the numerous gaps identified here require the international scientific community to combine efforts in order to conduct comprehensive studies in tropical forest regions. These results are essential to simulate the future of these ecosystems under diverse climate scenarios and to predict the future of the global earth carbon balance

    What will be the response of the tropical rainforest to temperature rising ans pluviometry changes ? : Modeling forest dynamics to identity the sensitive processes

    No full text
    En 2013, Le Groupe d'experts Intergouvernemental sur l'Evolution du Climat (GIEC) publie son cinquième rapport concernant les changements climatiques. Il y est souligné que le réchauffement climatique est sans équivoque, et que de nouvelles émissions de gaz à effet de serre impliqueront une poursuite du réchauffement et des changements affectant toutes les composantes du système climatique. En région tropicale, une hausse de la température, ainsi qu'une intensification des événements de sécheresse et de pluviométrie extrêmes sont à prévoir. C'est dans ce contexte que s'inscrit ce travail, dont le but est d'étudier la réponse de la forêt tropicale à ces changements climatiques prédits en Guyane Française. Pour ce faire, j'ai utilisé les données du dispositif de suivi forestier de Paracou pour construire un modèle de dynamique individuel basé sur les traits fonctionnels des arbres. Un modèle de mortalité a d'abord été réalisé puis couplé à un modèle de croissance.Le modèle couplé ainsi construit permet de modéliser la croissance et la mortalité des arbres sur un pas de temps de 2 ans tout en tenant compte de leur ontogénie et de leurs traits fonctionnels. Ce modèle a d'abord été appliqué aux essences commerciales de Guyane Française en forêt naturelle et exploitée en y ajoutant un indice de stress hydrique. Ceci permet de montrer que le stress hydrique fait baisser la croissance et augmenter la mortalité, tandis que l'exploitation a l'effet inverse. Malgré le signal commun, différentes réponses sont observées selon les espèces. Le modèle a ensuite été appliqué à la communauté en forêt naturelle pour identifier les drivers climatiques et les processus impactés. Il ressort que la croissance est impactée par le stress hydrique et la température, et que la mortalité est impactée par le stress hydrique et la pluviométrie totale.Ces résultats ont enfin permis de construire un modèle complet de dynamique forestière climat dépendant, et de simuler l'évolution d'une communauté pendant un siècle selon différents scénarios correspondant aux prédictions du GIEC. Les simulations mettent en évidence une très forte diminution de la croissance, ainsi qu'une plus faible diminution de la mortalité. Ceci entraine une diminution notable de la surface terrière, du diamètre quadratique et de la biomasse fraiche. Une analyse de sensibilité montre que ces changements sont principalement dus à l'augmentation sévère des températures prédites pour le siècle à venir. Des pistes de réflexion sur les enjeux de modélisation et les échelles considérées sont proposées en discussion de ce travail.In 2013 the intergovernmental panel on climate change (ipcc) publishes its fifth report. This report underlines that an increase of temperature and a strengthening of drought and extreme rainfall are expected in tropical regions. This work was made in this context of climate changes, and aimed to study the response of the rainforest to predicted climate changes. To do this, i used the data from the study site of Paracou French Guiana to build an individual based dynamics model based on the functional traits of trees. This model was first applied to species with a commercial interest in French Guiana, in natural and logged forest and adding a water stress index as predictor. Water stress decreases growth and increases mortality, while logging had the opposite effect. The model was then applied to the community in natural forest for identifying potential climate drivers and impacted processes. Growth is impacted by the water stress and temperature and mortality is imp acted by the water stress and the total rainfall. These results allowed us to build a climate dependent model of forest dynamics and to run simulations of the evolution of a community under different scenarios for the next century. Simulations showed a decrease of growth and a small decrease of mortality. This resulted in a substantial decrease of basal area, squared diameter and fresh biomass

    Climate Impacts on Tree Growth in the Sierra Nevada

    No full text
    corecore