922 research outputs found

    Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence

    Get PDF
    The surface plasmon polariton (SPP) field intensity in the vicinity of gratings patterned in an otherwise planar gold surface is spatially resolved using cathodoluminescence (CL). A detailed theoretical analysis is presented that successfully explains the measured CL signal based upon interference of transition radiation directly generated by electron impact and SPPs launched by the electron and outcoupled by the grating. The measured spectral dependence of the SPP yield per incoming electron is in excellent agreement with rigorous electromagnetic calculations. The CL emission is shown to be similar to that of a dipole oriented perpendicular to the surface and situated at the point of electron impact, which allows us to establish a solid connection between the CL signal and the photonic local density of states associated to the SPPs

    Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling

    Get PDF
    We use focused-ion-beam milling of a single-crystal Au surface to fabricate a 590-nm-long linear ridge that acts as a surface plasmon nanoresonator. Cathodoluminescence imaging spectroscopy is then used to excite and image surface plasmons on the ridge. Principal component analysis reveals distinct plasmonic modes, which proves confinement of surface-plasmon oscillations to the ridge. Boundary-element-method calculations confirm that a linear ridge is able to support highly-localized surface-plasmon modes (mode diameter < 100 nm). The results demonstrate that focused-ion-beam milling can be used in rapid prototyping of nanoscale single-crystal plasmonic components.Comment: 4 pages, 4 figure

    A novel, aerosol-nanocrystal floating-gate device for non-volatile memory applications

    Get PDF
    This paper describes the fabrication, and structural and electrical characterization of a new, aerosol-nanocrystal floating-gate FET, aimed at non-volatile memory (NVM) applications. This aerosol-nanocrystal NVM device features program/erase characteristics comparable to conventional stacked gate NVM devices, excellent endurance (>l0^5 P/E cycles), and long-term non-volatility in spite of a thin bottom oxide (55-60Å). In addition, a very simple fabrication process makes this aerosol-nanocrystal NVM device a potential candidate for low cost NVM applications

    Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements

    Full text link
    Localized surface plasmon resonances possess very interesting properties for a wide variety of sensing applications. In many of the existing applications only the intensity of the reflected or transmitted signals is taken into account, while the phase information is ignored. At the center frequency of a (localized) surface plasmon resonance, the electron cloud makes the transition between in- and out-of-phase oscillation with respect to the incident wave. Here we show that this information can experimentally be extracted by performing phase-sensitive measurements, which result in linewidths that are almost one order of magnitude smaller than those for intensity based measurements. As this phase transition is an intrinsic property of a plasmon resonance, this opens up many possibilities for boosting the figure of merit (FOM) of refractive index sensing by taking into account the phase of the plasmon resonance. We experimentally investigated this for two model systems: randomly distributed gold nanodisks and gold nanorings on top of a continuous gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles

    Density and expansion effects on pion spectra in relativistic heavy-ion collisions

    Get PDF
    We compute the pion inclusive momentum distribution in heavy-ion collisions at AGS energies, assuming thermal equilibrium and accounting for density and expansion effects at the time of decoupling. We compare to data on mid rapidity charged pions produced in central Au + Au collisions and find a very good agreement. The shape of the distribution at low mtmm_t-m is explained in part as an effect arising from the high mean pion density achieved in these reactions. The difference between the positive and negative pion distributions in the same region is attributed in part to the different average yields of each kind of charged pions.Comment: Minor changes, typo in Fig. 2b corrected, version to appear in Phys. Rev.

    Ultraefficient Thermophotovoltaic Power Conversion By Band-Edge Spectral Filtering

    Get PDF
    Thermophotovoltaic power conversion utilizes thermal radiation from a local heat source to generate electricity in a photovoltaic cell. It was shown in recent years that the addition of a highly reflective rear mirror to a solar cell maximizes the extraction of luminescence. This, in turn, boosts the voltage, enabling the creation of record-breaking solar efficiency. Now we report that the rear mirror can be used to create thermophotovoltaic systems with unprecedented high thermophotovoltaic efficiency. This mirror reflects low-energy infrared photons back into the heat source, recovering their energy. Therefore, the rear mirror serves a dual function; boosting the voltage and reusing infrared thermal photons. This allows the possibility of a practical \u3e50% efficient thermophotovoltaic system. Based on this reflective rear mirror concept, we report a thermophotovoltaic efficiency of 29.1 ± 0.4% at an emitter temperature of 1,207 °C

    Graphene plasmonics: A platform for strong light-matter interaction

    Get PDF
    Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much larger confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. We report strong light- matter interaction assisted by graphene plasmons, and in particular, we predict unprecedented high decay rates of quantum emitters in the proximity of a carbon sheet, large vacuum Rabi splitting and Purcell factors, and extinction cross sections exceeding the geometrical area in graphene ribbons and nanometer-sized disks. Our results provide the basis for the emerging and potentially far-reaching field of graphene plasmonics, offering an ideal platform for cavity quantum electrodynamics and supporting the possibility of single-molecule, single-plasmon devices.Comment: 39 pages, 15 figure

    Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface

    Full text link
    We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure
    corecore