60 research outputs found

    Energy-efficient low-temperature drying using adsorbents: a Process Systems Engineering approach

    Get PDF
    Diurnal evolution of organic aerosol over boreal and tropical forests The first research question of this thesis is: how do local surface forcings and large-scale meteorological forcings shape the evolution of organic aerosol over the boreal and tropical forest? This question is dealt with in Chapters 3 and 4 in case studies for the boreal and tropical forest, respectively. To answer this question a modeling tool (MXLCH-SOA) is developed, which represents land surface conditions and dynamical and chemical processes that influence the evolution of organic aerosol (OA) in a balanced way. The novelty of our approach is that it combines the dynamics of a convective boundary layer (BL) with a reduced gas-phase chemistry mechanism and a module for gas/particle-partitioning of semi-volatile organic species. The principles and governing equations of this modeling tool are described in Chapter 2 and in the subsequent chapters the simplified chemical reaction schemes are presented to calculate secondary organic aerosol (SOA) formation from terpenes (Chapter 3 and 4) and from isoprene (Chapter 4). Despite its simplicity, MXLCH-SOA is able to satisfactorily reproduce the main observed characteristics of dynamics, gas-phase chemistry and gas/particle partitioning for the two studied forest ecosystems and it enables us to explain the temporal variability of the concentrations of organic aerosol and its precursors as a function of the various processes. In short, the results show that the diurnal evolution of organic aerosol in a boreal and a tropical forest is the net result of land surface conditions, boundary layer dynamics, chemical transformations and gas/particle partitioning. In the case study for the boreal forest, the entrainment term of the background OA dominates the OA tendency, while in the tropical forest case it is the interplay of several local and large scale processes that shape the diurnal evolution of OA. A sensitivity analysis for the boreal forest case further shows that the OA concentration is sensitive to both volatile organic compound (VOC) emissions and the partitioning of the surface energy budget into a latent and a sensible heat flux. We have identified two regimes, based on which of the two studied land surface drivers dominates: one in which OA is mainly driven by SOA formation from the emitted VOCs and another in which dilution due to entrainment, as driven by the surface energy fluxes, determines the OA concentration. A background OA to fresh SOA ratio is introduced to facilitate the interpretation of this analysis and is used to quantify the contributions of both fresh and background components to the total OA concentration. One main difference between the two case studies is that in the boreal forest entrainment appears to dominate the diurnal cycle, which leads to a decreasing OA concentration during the day, while in the tropical forest the formation of SOA from both isoprene and terpenes leads to increasing OA concentrations during day time. The MXLCH-SOA framework therefore shows the need to represent all these biochemical and physical processes simultaneously in order to understand the diurnal evolution of OA. As the boundary layer dynamics-chemistry system is not a closed system, it is necessary to further study the influence of external forcings on the diurnal evolution of OA, besides the surface forcings. Two types of large-scale meteorological forcings and their effects on OA evolution through their impact on BL dynamics have been studied: subsidence due to the presence of a high pressure system and advection of relatively cool air. In Chapter 3 a theoretical sensitivity analysis is given of OA evolution to subsidence, which is applied to the tropical forest case study in Chapter 4. Subsidence has a rather counter-intuitive effect on OA concentrations: even though it suppresses the growth of the BL and consequently decreases the mixing volume for chemical species, it leads to decreased OA concentrations. The reason for this is that entrainment is strongly enhanced in case of subsidence due to thermodynamic effects, which results in a stronger dilution of OA. This knowledge is applied in the case study for the tropical forest in Chapter 4, since results from a large-scale model show subsiding air motions over the measurement site and surroundings at Borneo. In addition to subsidence, the advection of cool air is needed to reproduce the observed boundary layer dynamics at Borneo: only if subsidence and advection of relatively cool air are accounted for, the observed low BL height can be reconciled with the large observed surface sensible and latent heat flux. This cool air suppresses BL growth and entrainment. Consequently, the aerosol is trapped in a shallower layer, which leads to an increased concentration compared to the case without advection of cooler air. In conclusion, the large-scale meteorological forcings subsidence and advection of cool air have opposing effects on the diurnal evolution of OA, even though both suppress BL growth. These findings show the utility of our method in identifying effects that should be accounted for in large-scale chemistry transport models. The second research question is whether recently discovered pathways of isoprene chemistry are the key to closing the gap between measured and modeled organic aerosol concentrations in tropical forests and other high isoprene environments. To address this issue, several mechanisms which may affect SOA formation from isoprene are implemented in MXLCH-SOA and discussed in Chapter 4. The hydroxyl radical (OH), the main oxidant of isoprene, is thought to be regenerated in the oxidation of isoprene. We find that for the tropical forest case study, we cannot reconcile the modeled concentrations of VOCs, OH and OA with their observed concentrations and fluxes both for cases with and without OH recycling. Therefore, we conclude that the issue of recycling of the OH radical in the oxidation of isoprene has to be solved before its effect on SOA formation can be determined. The formation of SOA from isoprene involves multiple generations of oxidation and due to this complex chemistry there is no single mechanism which can explain SOA formation from isoprene under all conditions. To gain understanding in this issue, we have implemented different pathways through which isoprene SOA is known to form, although we do not explicitly account for the detailed isoprene oxidation chain. A central aspect of this branching approach is whether the isoprene peroxy radical chemistry follows the low- or the high-NOx pathway. We find that the latter channel dominates in our case study. For SOA formed through the high-NOx channel, we further account for the effect of the NO2/NO ratio on SOA yields. In the presented case study this has little effect as this ratio is low, it but could be more important in regions with slower photochemistry or higher emissions of anthropogenic pollution. In the low-NOx regime, isoprene epoxides (IEPOX) are important intermediate gas-phase species in the formation of isoprene SOA. Even though the low-NOx pathway is only a minor one here, the amount of IEPOX SOA formed is likely substantial, although a better understanding of the exact mechanisms for its formation is needed to confirm this. However, as in previous studies we systematically underestimate the organic aerosol concentration in a tropical forest even though we incorporate the state-of-the-art knowledge on isoprene SOA formation in MXLCH-SOA. Nevertheless, we advocate accounting for NOx regime specific chemical pathways when modeling isoprene SOA formation. As this field is rapidly evolving in terms of the development of new measurement techniques and the discovery of chemical mechanisms, we strongly recommend the intensive use of our modeling system to gain further understanding of the diurnal variability of OA and for testing new hypotheses under atmospheric conditions. Satellite observations of cloud droplet concentration over the boreal forest The final objective of this thesis is to understand how aerosols and meteorological factors influence cloud droplet concentration over the boreal forest. This is a first step in translating the process understanding such as addressed in the previous chapters to larger spatio-temporal scales. Since this objective considers different temporal and spatial scales, a different method is applied in Chapter 5 than in the foregoing chapters. Observations of cloud properties by the MODIS instrument onboard the Terra satellite are combined with a model that contains the microphysics and thermodynamics of a single-layered water cloud to obtain a seasonal cycle of cloud droplet number concentrations, averaged over 9 years of data. This seasonal cycle in cloud droplet concentration is compared with aerosol concentrations at the surface and meteorological fields from ECMWF reanalysis. We find that the cloud droplet number concentration is related to the potential temperature gradient in the boundary layer, a measure for the strength of convection, while it shows no clear relationship with the cloud active aerosol concentration at the surface. From this we conclude that the convective transport of the aerosols from the surface to cloud base is the limiting factor for their activation as cloud droplets. However, convection will also influence the formation of clouds from a thermodynamic perspective. Therefore, it is likely that convection, as driven by land surface conditions, regulates both transport of aerosols to cloud base and the height of the cloud base, defined as the height at which water vapor reaches its saturation pressure. To ultimately understand the effect of the boreal forest on cloud properties, the effects of aerosols and thermodynamics should be studied simultaneously. </p

    Fluidized bed drying of petals of Echium amoenum Fisch. and C.A. Mey: energy analysis and carbon footprint

    Full text link
    [EN] The energy performance and carbon footprint associated with the fluidized bed drying of petals of Echium amoenum Fisch. and C.A. Mey are experimentally evaluated at three temperatures (40,50,60°C) and air velocities (0.50,0.75,1.00m/s). The maximum and minimum specific energy consumption are observed to occur at 40°C and 1ms-1 (79.18MJ/kg) and 60°C and 0.5m/s (22.60MJ/kg), respectively. The greenhouse gas emission is in the range, 0.10-8.40kgCO2eq, varying with drying conditions in the same manner as energy consumption, with natural gas-fired systems performing better than oil-fired systems. High-temperature, low-air velocity drying is thus, favourable for energy-efficient and sustainable fluidized bed drying of the petals.Nadi, F.; Atuonwu, J. (2018). Fluidized bed drying of petals of Echium amoenum Fisch. and C.A. Mey: energy analysis and carbon footprint. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1961-1968. https://doi.org/10.4995/IDS2018.2018.8378OCS1961196

    A kinetic model for whey protein denaturation at different moisture contents and temperatures

    Get PDF
    The denaturation of whey protein samples that had previously undergone heat-treatment for different times at different temperatures and moisture contents was analysed by differential scanning calorimetry (DSC), using the DSC enthalpy as a measure of residual undenatured protein. Data were fitted to first order irreversible or reversible kinetic expressions, and the resulting rate constants were found to increase with both temperature and moisture content. The whole data set was then fitted as a function of time, temperature and moisture content, with rate constants varying according to either Arrhenius or Williams-Landel-Ferry (WLF) kinetics and with selected fit parameters made empirical functions of moisture content. The best fits were obtained using reversible WLF kinetics, which could be further slightly simplified without loss of accuracy. The model provides a platform for single- and multi-objective drying trajectory optimisation with respect to protein denaturation in dairy products

    Cost-Energy Optimum Pathway for the UK Food Manufacturing Industry to Meet the UK National Emission Targets

    Get PDF
    This paper investigates and outlines a cost-energy optimised pathway for the UK food manufacturing industry to attain the national Greenhouse Gas (GHG) emission reduction target of 80%, relative to 1990 levels, by 2050. The paper employs the linear programming platform TIMES, and it models the current and future technology mix of the UK food manufacturing industry. The model considers parameters such as capital costs, operating costs, efficiency and the lifetime of technologies to determine the cheapest pathway to achieve the GHG emission constraints. The model also enables future parametric analyses and can predict the influence of different economic, trade and dietary preferences and the impact of technological investments and policies on emissions. The study showed that for the food manufacturing industry to meet the emission reduction targets by 2050 the use of natural gas as the dominant source of energy in the industry at present, will have to be replaced by decarbonised grid electricity and biogas. This will require investments in Anaerobic Digestion (AD), Combined Heat and Power (CHP) plants driven by biogas and heat pumps powered by decarbonised electricity.RCU

    Reducing energy consumption in food drying: opportunities in desiccant adsorption and other dehumidification strategies

    Get PDF
    This work assesses the energy efficiency of dehumidification drying vis-à-vis conventional convective drying techniques. Mathematical models are developed by means of which the energy efficiencies of different dehumidification dryer types are expressed in terms of that of a conventional convective dryer operating at the same temperature. This permits the isolation of important design and operational parameters specific to each dryer type which when optimized, improve energy efficiency for the same product quality requirement and ensure better product quality for the same efficiency as a conventional dryer. Desiccant dehumidification systems have the advantage of providing further opportunities for beneficial heat integration

    Essential oils from the leaves of six medicinal plants of Nigeria.

    Get PDF
    The chemistry of Cassia siamea L., C. occidentalis L. (Fabaceae), Cnestis ferruginea Vahl ex DC (Connaraceae), Anthocleista djalonensis A. Chev (Loganiaceae), Solanum torvum Swartz and S. erianthum G. Don (Solanaceae) volatiles grown in Nigeria have been studied. The essential oils were obtained by hydrodistillation and analyzed by GC and GC-MS. The main compounds of C. siamea were (E)-geranyl acetone (5.8%), 1-octen-3-ol (5.8%), linalool (7.8%), iso-italicene (15.4%) and (E)-β-damascenone (11.0%). On the other hand, C. occidentalis consisted mainly of (E)-geranyl acetone (8.0%), hexahydrofarnesylacetone (24.0%) and (E)-phytol acetate (40.7%). The oil of C. ferruginea was comprised mainly of (E)-geranyl acetone (13.7%), (E)-α-ionone (9.5%), phytol (5.8%), pentadecanal (6.1%) and 1-octen-3-ol (5.5%). The main compounds of A. djalonensis were α-humulene (31.9%), β-caryophyllene (17.8%), humulene epoxide II (12.7%) and caryophyllene oxide (5.9%). The main volatiles of S. torvum were (E)-phytol acetate (38.7%), pentadecanal (25.3%) and (E)-geranyl acetone (5.0%). Apart from methyl salicylate (4.5%), tetradecanal (2.2%), 2-pentyl furan (1.8%), hexahydrofarnesylacetone (1.6%) and hexadecanal (1.1%), all other compounds were either present in trace quantity or in amounts less than 1%. On the other hand, α-humulene (46.6%) and β-caryophyllene (20.6%) were the compounds occurring in higher quantities in S. erianthum. The volatile oil contents of Cassia siamea, Cnestis ferruginea, Anthocleista djalonensis and Solanum torvum are being reported for the first time

    Identification and predictive control of a multistage evaporator

    Get PDF
    A recurrent neural network-based nonlinear model predictive control (NMPC) scheme in parallel with PI control loops is developed for a simulation model of an industrial-scale five-stage evaporator. Input-output data from system identification experiments are used in training the network using the Levenberg- Marquardt algorithm with automatic differentiation. The same optimization algorithm is used in predictive control of the plant. The scheme is tested with set-point tracking and disturbance rejection problems on the plant while control performance is compared with that of PI controllers, a simplified mechanistic model-based NMPC developed in previous work and a linear model predictive controller (LMPC). Results show significant improvements in control performance by the new parallel NMPC-PI control scheme
    corecore