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Abstract

A recurrent neural network-based nonlinear model predictive control (NMPC) scheme in parallel with PI control loops is

developed for a simulation model of an industrial-scale five-stage evaporator. Input-output data from system identification

experiments are used in training the network using the Levenberg-Marquardt algorithm with automatic differentiation. The

same optimization algorithm is used in predictive control of the plant. The scheme is tested with set-point tracking and dis-

turbance rejection problems on the plant while control performance is compared with that of PI controllers, a simplified me-

chanistic model-based NMPC developed in previous work and a linear model predictive controller (LMPC). Results show

significant improvements in control performance by the new parallel NMPC-PI control scheme.

Key words: Multiple-effect evaporators, nonlinear model predictive control, nonlinear system identification, recurrent neural

networks, automatic differentiation.

1. Introduction

The class of control algorithms that utilize dynamic process models as a means of incorporating process knowledge into

the controller structure for solving open-loop optimal control problems at defined time steps over a receding time horizon

has received significant attention in recent times. Generically referred to as model predictive control (MPC), these algo-

rithms have been well received in industry because of their effectiveness in the high performance control of multivariable

systems with strong process interactions and operating constraints, without the need for explicit input-output pairing. MPC
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techniques have been implemented in various forms, some of which have found their way to the market place. Examples of

such implementation algorithms are available in the review by Qin and Badgwell (2003).

In industrial processes, nonlinearity is the rule. Even for processes that are linear over a wide operating range, valve satu-

ration places a limit on the level of input for which the system remains linear (Atuonwu et al 2009). In spite of this, industri-

al applications of MPC have relied mainly on linear dynamic models until recently (Al-Seyab and Cao, 2008a & b). This is

because the assumption of process linearity greatly simplifies model development and control design (Henson, 1998). The

performance of an MPC system is inherently tied to the accuracy of prediction which in turn depends on the degree of

matching between the process and its prediction model (Atuonwu et al 2009). A linear model is often sufficient in cases

where the process operates at a single set-point and the control problem amounts to the rejection of small disturbances

(Piché et al, 2000). However, operating points of many chemical processes vary over large regions such that a linear model

is unable to adequately capture the process dynamics (Al-Seyab and Cao, 2008a & b). Moreover, some processes are severe-

ly nonlinear even in the vicinity of steady state. In view of these, the last two decades or so have witnessed a tremendous

increase in research effort towards the use of nonlinear models. This has culminated in the development of various nonlinear

model-based commercial products which include (Qin and Badgwell, 2003): Predictive Functional Control (PFC), courtesy

of Adersa, Multivariable Control (MVC), courtesy of Continental Controls, Aspen Target, courtesy of Aspen Technologies,

NOVA-NLC, courtesy of DOT Products and Process Perfecter, courtesy of Pavilion Technologies. Until recently, reported

nonlinear model predictive control (NMPC) applications in the literature have focused mainly on small-size problems espe-

cially single-input, single-output problems (Henson, 1998; Rangaiah et al, 2002; Yu and Gomm, 2003). The main objective

of this work is to develop and apply a differential recurrent neural network (DRNN) model based NMPC scheme to a mod-

erate-size problem, a 5-input, 5-output, 12-state industrial multistage evaporator system.

Although the use of nonlinear models in the predictive control of nonlinear processes will in principle give better perfor-

mance than the use of linear models, some other problems arise. First, the use of nonlinear models leads to a non-convex

optimization problem for which a globally optimal solution is not guaranteed. Secondly, model development becomes more

difficult. The development of first principle models is usually time-consuming and effort-demanding especially for complex

processes (Henson, 1998), and involves making assumptions which most times, negatively affect accuracy. In many cases

therefore, the use of empirical or black box models becomes an inevitable step in an NMPC project (Al-Seyab and Cao,

2008a & b). One of the advantages of black box modeling is that there is no need for a priori knowledge of what is going on

in the plant. All that is needed is a set of input-output data obtained from plant measurements from which a nonlinear ma-
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thematical description of the plant can be inferred. This is nonlinear system identification. However, due to the complexity

of nonlinear systems, it is not possible to develop nonlinear system identification techniques by a straightforward extension

of linear theory.

A fundamental difficulty associated with empirical modeling approaches is the selection of a suitable modeling form (Hen-

son, 1998). Pearson and Ogunnaike (1997) categorized the models utilized for NMPC including: Volterra, Hammerstein,

Wiener, polynomial autoregressive moving average model with exogenous inputs (polynomial ARMAX), its nonlinear

form, (NARMAX), and artificial neural network (ANN) models. The use of block-structured nonlinear time series models,

containing linear dynamic and nonlinear static elements (e.g. Wiener and Hammerstein models) for NMPC is well-reported

in the literature. To reduce computational burden, the solution of such systems is usually based on the inversion of the non-

linear element such that the nonlinear dynamic optimization is avoided (Zhu and Seborg, 1994; Norquay et al, 1998; Piché

et al, 2000). However, the fact that the nonlinear element must be invertible limits the applicability of this solution. Also, to

obtain unique solutions with this method, the nonlinearity of the model must be bijective, which is not generally applicable.

For MIMO systems, more restrictions on the model structures are imposed. In response to this, Harnischmacher and Mar-

quardt (2007) posed the NMPC problem as a nonlinear dynamic optimization problem constrained by the block-structured

model. The result was an approximate model, which provides a viable compromise between the limited predictive capabili-

ties of a linear model and the costly development of a rigorous nonlinear dynamic model. The model is however inferior in

prediction quality to a rigorous nonlinear model such as the one provided by recurrent neural networks. Moreover, using the

so-called two-step model identification approach (Nagy, et al., 2007) for system identification (to be explained later) in re-

current neural network modeling, the high costs of physical system identification can be eliminated.

The nonlinear model types mentioned above are not suitable for the multi-effect evaporator process. Wiener/ Hammers-

tein type nonlinear models can only capture static nonlinearities, i.e. either static input nonlinearities e.g. )(ufAxx  ,

or static output nonlinearities, e.g. )(xgy  . However, both models are unable to capture dynamic nonlinearities, e.g.

),( uxfx  . The mechanistic model equations of the evaporator (as presented in the Appendix) clearly indicate that the

multiple-effect evaporator is neither a Wiener nor a Hammerstein type system. For example, dtdT / is nonlinearly depen-

dent on other states, 1h and 1 . Similarly, both dtdh /1 and dtd /1 are functions of 1E , which is nonlinearly depen-

dent on 1 and 1T . Furthermore, due to the recycling of the multiple-effect evaporator, such dynamic nonlinearity streng-

thens through internal state coupling. Therefore, Weiner / Hammerstein type nonlinear models are not sufficient to represent
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such a system. Some nonlinear models, such as NARMA and OBF-NARX, are one-step prediction models. The deficiency

of such kind of models, e.g. FFNN, for NMPC is to be discussed below. On the other hand, Volterra series models require a

large number of parameters to be optimized so that it is very difficult to apply such models to high order systems, such as

the multi-stage evaporator, which has 17 states. Finally, almost all of these methods are in discrete-time, which are only va-

lid for a predetermined sampling rate. A continuous-time DRNN model is developed successfully in this work to capture the

dynamic nonlinearity of the plant in satisfactory with a relatively small parameter space. This success together with others

reported in the literature demonstrates the advantage of the continuous-time DRNN type model.

Of all the nonlinear black box modeling techniques available, artificial neural networks are the most popular (Su and

McAvoy, 1997). One reason for the widespread application of artificial neural networks is that as parallel signal processing

devices they are inherently fast and so, hold the promise of solving problems that have proven difficult to solve by conven-

tional computers. They also have the ability to learn from examples. The use of neural networks for the predictive control of

nonlinear processes has been widely studied. Galvan and Zaldivar (1998) applied recurrent neural networks for nonlinear

predictive control of the heat transfer fluid temperature in a batch reactor. Schenker and Agarwal (2000) employed an esti-

mation-prediction approach involving two neural networks for the predictive control of a semi-batch reactor. More recently,

Mohanty (2009) applied neural networks to the predictive control of a flotation column, while Mjalli and Hussain (2009)

used a feed-forward neural network with delayed inputs and outputs to capture the dynamics of a bio-diesel process. In these

and all other cases, the most commonly used neural network architecture is the multilayer perceptron, MLP (Nørgaard et al,

2000) which is categorized into two: the feed-forward (FFNN) and the recurrent neural networks (RNN). Majority of publi-

cations on neural network-based system identification and predictive control report the use of FFNNs , e.g., Temeng et al

(1995). The main problem with FFNNs is that they can only provide predictions for a predetermined number of steps,

usually only one step (Al-Seyab and Cao, 2008a & b). One way of providing long range predictions using FFNNs is to cas-

cade them by using the one-step-ahead output of an FFNN as an input to another so that for n FFNNs, an n -step-ahead

prediction is realized (Werbos, 1990). This approach, however, faces the problem of error propagation which degrades long-

range prediction accuracy (Ou and Rhinehart, 2002). Jazayeri-Rad (2004), proposed the use of multiple FFNNs with one

hidden layer to model an m -input, n -output nonlinear dynamic system. This system was made up of a two-dimensional

array of FFNN blocks with each block consisting of a one-step-ahead predictive neural model, identified to represent each

output of the MIMO system. Though this approach has been proven to solve the multi-step-ahead prediction problem of

FFNNs, it demands the training of a new FFNN for every extension to the prediction horizon.
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Recurrent neural networks (RNNs), on the other hand, are able to provide long-range predictions, even in the presence of

measurement noise (Su and McAvoy, 1997). Models based on RNNs have proven to have considerably greater representa-

tional capabilities than FFNN-based models (Puskorius and Feldkamp, 1994). They have the capability of capturing various

plant nonlinearities (Funahashi and Nakamura, 1993), and require less number of neurons to model dynamic systems (Hush

and Horne, 1993). RNNs are also more suitable for representation in state space form which is commonly used in most con-

trol algorithms (Zamarreno and Vega, 1998). The main problem with RNNs is in their training due to the large number of

sensitivity equations to be solved in the associated nonlinear optimization problem. Ou and Rhinehart (2002) considered the

computational burden in RNN training so prohibitive that they preferred implementing an FFNN to approximate the dynam-

ics of a case-study mixing flow system. Sentoni et al (1998) also identified this problem and proposed the development of

“efficient and feasible training methods”. They then, developed another model scheme consisting of a decoupled linear dy-

namic system cascaded with a single hidden layer perceptron (nonlinear static map). The efficient training problem however

remained unresolved. Various training strategies for neural networks have been suggested in the literature, such as the back-

propagation method (Rumelhart et al, 1986), the conjugate gradient method (Leonard and Kramer, 1990), Levenberg–

Marquardt optimization (Marquardt, 1963), or methods based on genetic algorithms (Goldberge, 1989). Among these, the

Levenberg–Marquardt algorithm is known to be a robust and fast gradient-based method because of its second-order con-

verging speed without having to compute the Hessian matrix (Al Seyab and Cao, 2008a & b). Recently, automatic differen-

tiation and Taylor series techniques have been used to simplify the dynamic sensitivity equations associated with the net-

work training and NMPC algorithms (Cao and Al-Seyab, 2003; Cao, 2005), thus increasing the efficiency of, and reducing

the computational burden associated with solving online, the associated nonlinear differential equations and nonlinear dy-

namic optimization problems in real time.

RNNs can be formulated in discrete-time (Zamarreno and Vega, 1998), or continuous-time (Funahashi and Nakamura,

1993). Discrete-time RNNs can only work for a particular sampling frequency and no information is given about the model

trajectories between the sampling instants. If the sampling frequency is to change, the model has to be re-built. On the other

hand, a continuous-time RNN can be used for any sampling frequency (Kambhampati et al, 2000) even for continuous-time

NMPC. Although a continuous-time RNN has clear advantages, it has rarely been used in NMPC. The main reason proba-

bly is due to the difficulty in solving the differential parameter optimization problem associated with the continuous-time

nonlinear model identification problems.
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In this work, a continuous-time DRNN model of a five-stage evaporator is developed, trained using automatic differentia-

tion techniques and implemented as the internal model of the NMPC scheme for the prediction of the dynamic behavior of

the plant. The example evaporator is the first step in the liquor burning process at an alumina refinery. The plant is open-

loop unstable due to the integrating properties of the flash tank levels. An open-loop identification experiment cannot be

carried out without a stabilizing controller in place because of the open-loop unstable nature. Therefore, closed-loop system

identification was adopted in this work. The PI controller plays the role of stabilizing the plant so that a wide range of input-

output data can be collected. In addition, as pointed out by Draeger , et al (1995), closed loop system identification with PI

controllers is a more practical and effective approach than open-loop system identification since the plant is always under

control, and the excitation becomes much more similar to the one that will be encountered under the final nonlinear control

scheme. A previously developed feedback stabilizing PI controller (Rangaiah et al., 2002) is used in stabilizing the plant

during closed-loop identification where the perturbations are added directly to the manipulated inputs. The new control al-

gorithm is then implemented with the PI controller in place.

The remainder of the paper is organized as follows. Section 2 gives details of the evaporator system and the identification

results. The developed model is used for NMPC as described in Section 3. Finally, the work is concluded in Section 4.

2. Evaporator System Identification

2.1. The Multistage Evaporator: System Description

Evaporation is a key unit operation applied in a wide variety of process industries such as the food and beverage, pharma-

ceutical, pulp and paper, mineral processing industries, amongst others. The evaporator system chosen for predictive control

is the first step in the liquor burning process associated with the Bayer process for alumina production at the Wagerup alu-

mina factory in Western Australia. This evaporator system has being identified in previous studies (Ekawati et al, 2003) as

being “notoriously” nonlinear and interacting so that linear control schemes are inadequate. The system consists of one fall-

ing-film, three forced circulation and one super-concentration evaporator connected in series. Each of these five stages basi-

cally consists of a flash tank (FT), a heater (HT) and a flash pot. Fig. 1 shows a schematic of the system with the flash pot

omitted for simplicity. Fresh liquor, recovered after precipitation of the alumina from its solution is fed to the falling film

stage (FT#1). The volatile component, water is removed under high recycle rate and further concentrated through the

forced-circulation stages, FT#2 – FT#4 (Fig. 1). FT#5 is a super-concentration stage that serves the purpose of further con-

centrating the product without recycling. In each of the forced-circulation and super-concentration stages, the spent liquor is
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heated through a shell and tube heat exchanger (heater) and water is removed as vapour at a lower pressure in the flash tank.

The flashed vapour is then used as the pre-heating medium in upstream of the heaters. The flashed vapour from FT#3 and

FT#4 are combined and used in HT#2 while the vapour from FT#2 is used in HT#1. The flashed vapour from FT#5 is sent

directly to the condenser, C. The steam condensates from the heaters are collected in the flash pots. Live steam is used as the

heating medium for HT#3, 4 and 5. Live steam to HT#3 is set in ratio to the amount of live steam entering HT#4, while the

amount of live steam to HT#5 is set depending on the amount of residual ‘flashing’ to be removed. The cooling water flow

to the contact condenser is set such that all remaining flashed vapour is condensed. The evaporator system is crucial in the

aluminium refinery operation and is difficult to control due to recycle streams, strong process interaction, nonlinearities and

the integrating properties of the flash tank level which makes the system open loop unstable. These flash tank levels there-

fore have to be controlled in addition to product density which gives an indication of quality. Two mechanistic models M1

and M2 of the first four stages of the evaporator have been developed (Kam and Tadé, 1997) and implemented in various

platforms (Kam et al, 2001). Complete details of the models are available in Kam and Tadé (1997). To appreciate the differ-

ence between the models, an overview of the equations of the first stage is presented in Appendix 1 (for both models). Also, the assump-

tions made in their development and more importantly, the differences between the models are presented. Because of the fewer assump-

tions made in its development, model M1 gives a much better approximation to the true process than model M2. Hence, in this work, M1

is adopted to represent the process.

For this process, there are 12 state variables whose steady-state values are shown in Table 1. The first five states (flash

tank levels 4,3,2,1ihi and the product liquor density of the 4th stage 4 ) are output variables. Other states are, the prod-

uct liquor temperatures 1T , 2T , 3T and 4T for which online measurements are available in the actual plant situation togeth-

er with the unmeasured states which consist of the densities 1 , 2 and 3 of the product liquors from the first three stag-

es. Control is achieved by manipulating the product liquor flows, )4,3,2,1,( iQPi from each of the first four stages and

the steam flowrate to the 4th heater )( 4Sm .
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Fig. 1. The Multistage Evaporator System

Applications of neural networks to the predictive control of multi-input, multi-output (MIMO) processes are rare in lite-

rature. A few reported cases (e.g. Chen and Yea, 2002; Yu and Gomm, 2003) usually decompose the system into a number

of multi-input, single-output (MISO) subsystems which are later combined to form a parallel process model. This leads to

sub-optimal results. In this work, the MIMO system is represented in a single recurrent neural network model.

2.2. Model Development

The evaporator system can be modeled in state space as

 uxx pp ,pf (1)

 uxy pp ,pg (2)

where pf and hence pg are unknown nonlinear functions of state px and input u . The input, state and output vectors are

defined respectively as:
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 TSPPPP mQQQQ 44321u (3)

 TTTTThhhh 321432144321 px (4)

 Thhhh 44321 py (5)

Table 1. Steady-state Values of Input & State Variables

Input Description Value State Description Value

1PQ

2PQ

3PQ

4PQ

4Sm

1st stage product flowrate

2nd stage product flowrate

3rd stage product flowrate

4th stage product flowrate

4th stage steam flowrate

32.736 m 3/ h

27.713 m 3/ h

28.350 m 3/ h

21.642 m 3/ h

24 kg / h

1h

2h

3h

4h

4

1T

2T

3T

4T

1

2

3

1st stage flash tank level

2nd stage flash tank level

3rd stage flash tank level

4th stage flash tank level

4th stage product density

1st stage product temperature

2nd stage product temperature

3rd stage product temperature

4th stage product temperature

1st stage product density

2nd stage product density

3rd stage product density

1.5 m

2.25 m

2.25 m

2.25 m

1.54 g / cm 3

66 C

90.6 C

129 C

135 C

1.357 g / cm 3

1.422 g / cm 3

1.49 g / cm 3

To approximate the unknown functions, an RNN model is developed with the general form:

 θuxx ,,f (6)



Preprint submitted to CEP 1 2 August 2010

 θuxy ,,g (7)

where θ is the network parameter vector comprising of the weights and biases, f and g are nonlinear functions, which

are determined by iteratively adjusting model parameters, θ until the sum of squared errors (SSE) represented in (8) is mi-

nimized.

EEee T
N

k
k

T
k 2

1
2
1

1

 


(8)

Here, the error vector at each sampling point k is defined as:

   θyye p ,kkk  (9)

Hence,

   TT
n

T eeθEE 1 (10)

The Jacobian J of the error and the sensitivity θ are calculated iteratively using automatic differentiation (Cao, 2005) as

follows:

 
θ
E

θJ



 (11)

   θEθJ
θθ 



d
d

(12)

The variable θ is iteratively adjusted using the Levenberg- Marquardt nonlinear least squares algorithm as follows

        jjjjj1j θEθJIθJθJθθ TT μ
1

  (13)

where 1jθ  is the vector of updated model parameters, jθ the current parameter vector, μ a scalar which is to be adjusted

by the algorithm during the iteration and I the identity matrix.

The governing equations of the model (as shown in Fig. 2) are:

  21uxs2 bbuWxWσWx  (14)
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Cxy  (15)

where xh xnnxW , uh xnnuW and hxxnn2W are connection weights, and hn1b and xn2b are bias vec-

tors. hn represents the number of hidden nodes, xn represents the number of network states while un and yn represent the

numbers of input and output nodes, respectively. Each element of the vector   hnsσ represents the sigmoid-tanh acti-

vation function defined as follows:

  z

z

s zσ 2

2

1
1









e
e

(16)

where from equation 14,

1xu bxWuWz  (17)

Fig. 2 Structure of the differential recurrent neural network

The parameter vector θ is thus defined as

       nTTTTT vecvecvec  221ux bWbWWθ (18)

where the number of elements of θ is

   11  uxhhx nnnnnn (19)

The output linear activation function C is defined as

  nynxnynyny  0IC , (20)
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2.3. Model Topology

The predictive power of an artificial neural network (ANN) depends largely on its topology. The topology consists of the

number of model parameters as well as their distribution in the input, hidden and output layers. The errors in the parameter

estimates are directly proportional to the number of model parameters ( n ) and inversely proportional to the number of data

points (Ns). For a given number of data points, the number of model parameters should be kept as small as possible, but

large enough to learn the system dynamics, while carrying out model parameter estimation (Sjoberg, et al., 1995). A number

of studies have been done in this respect. For instance, Bhat and McAvoy (1992) formulated an optimization problem with a

two-term objective function. The first term, a complexity term attempts to force all weights towards zero while the error

term selectively favours the positive increment of weights that contribute largely to error minimization. The result is that

only the least contributing weights are driven to the zero region where they are deleted or stripped. This method is thus

called “network stripping”. More recently, Nagy (2007) proposed a pruning method based on the so-called optimal brain

surgeon algorithm. In this approach, weights that do not contribute significantly to performance are eliminated thus, pre-

venting over fitting and reducing training time. In this work, the size of the network is defined by equation (18) correspond-

ing to the structure shown in Fig. 2. The plant to be identified in this study consists of 5 inputs, 5 outputs and 17 states com-

prising the original 12 plant states and 5 additional states from PI controllers. Each input is represented by an input neuron

and each output is represented by an output neuron, while the number of network state parameters is 17. The system is thus

constrained to 5 yu nn and xn =17. The only decision variable therefore is the number of hidden nodes, hn .This was

determined by varying hn during training and checking training errors (for learning performance) and validation errors (for

generalization). Table 2 shows the sum of squared errors at the end of training and at the end of validation with a fresh data-

set. Using 1251 data points for both training and validation (to be discussed in the next section), it is seen that for 3hn ,

under fitting occurs as both training and validation results are poor. For 3hn , over fitting occurs as validation becomes

poorer even though training results are still good. Moreover, training time is severely increased. Thus, an optimal number

3hn is chosen and correspondingly the total number of model parameters given in (19) is 137. This corroborates the re-

sults of Wanas, et al. (1998), who showed empirically that neural networks perform best when the number of hidden nodes

equals to the logarithm of the number of training samples.
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Table 2. Error dependence on number of hidden nodes

Number of hidden nodes SSE for training data SSE for validation data
1 27.4191 29.7812
2 16.1644 21.6379
3 14.2811 21.4595
4 14.1660 404.3486

2.4. Model Training and Validation

The identification of industrial plants is a costly and time-consuming exercise involving many experiments. The detailed

mechanistic model M1 (Kam and Tadé, 1997) is a good approximation to the plant due to fewer assumptions and the incor-

poration of some plant measurements in addition to the heat and mass balances. However, it is too complex to be used in

controller design (Rangaiah, et al., 2002). Thus in this study, a two-step model identification approach (Nagy, et al., 2007) is

exploited as follows:

 The development of M1 from the actual plant done in previous work was taken as the first step.

 The RNN model is then subsequently identified from the mechanistic model M1. The identification scheme as-

sumes that the plant model equations are unknown and the only available information is the input–output data

which are generated through various runs of model M1.

The above approach has the advantage of eliminating extensive real plant experiments. In addition, it is valid as M1 closely

approximates the actual plant. For training, 1251N samples of input-output data were collected by applying normally

distributed random signals randu to the process which consists of M1 with the PI controllers connected in closed loops as

shown in Fig. 3. randu , which represents the perturbations of the input variables from their steady-state values, is the input

while y is the output. In this identification, the sampling rate was 10 samples per hour (6 min per sample) over a period of

125 hours. At the same time, another dataset consisting of 1251 points but at a higher sampling rate of 20 samples per hour

(3 min per sample) was collected and used for validation over a period of 62.5 hours. The excitation input was chosen to be

random such that it contains a wide range of frequencies capable of persistent excitation. The sampling time was chosen to

be 0.1 hours, about a quarter of the smallest time constant in the system and hence, it is low enough to capture the system

dynamics. At the same time, the sampling time together with the amplitude of the input perturbations were chosen to be

high enough to ensure output amplitudes are driven to the expected range of operation. For instance, the first flash tank lev-

el, 1h is made to cover the range from below 1.5 to above 1.8 m so that the neural network is trained adequately in the re-
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gion relevant to one of the previously studied set-point tracking cases (Rangaiah, et al., 2002) to be examined in this work.

Fig. 4 shows the training and validation input excitations. The training results (Fig. 5) show a good approximation with the

coefficient of determination, 2 of 95%. The statistical tool “coefficient of determination” (Colannino, 2006) in this case, is

the proportion of the variations in the plant output data explainable by the neural network model. Numerically, it satisfies

the inequality 10 2  . Mathematically, it is defined as:
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where py is the mean value of py over N plant output measurements, and y is the neural network output. The validation

results (Fig. 6) show reasonably good generalization properties with the 2 of 78%.
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Fig. 3. Schematic signal connections in system identification experiments
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Fig. 5. Model training results

3. Implementation of NMPC on the Evaporator System

Due to its open-loop unstable nature, the plant was identified with the PI controller in place (as shown in Fig. 3). Hence, the

control configuration adopted in this work is an NMPC-PID parallel supervisory control scheme which has been adopted in

previous works (e.g. Bulut et al., 2000; Balbis, et al., 2006) to improve closed-loop performance. This set-up permits the

NMPC to directly manipulate the input in parallel with the PID controllers, which stabilize the plant. An alternative ar-

rangement (not adopted in this study) is the cascade control configuration where the NMPC dictates, based primarily on

economics through a higher level economic optimizer, the set-point of the lower level regulatory PID, while the PID does all

the regulation. The PI controller parameters determined in previous work (Rangaiah et al., 2002) are

 05.015.9362.9345.10628.53 cK and  0501.02112.013.1053.19528.2iτ for

proportional gain and integral time, respectively. Fig. 7 shows the final control scheme incorporating the PID and NMPC

controllers, with the NMPC represented by a dashed box containing the components, namely the RNN and optimizer. The
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RNN performs model predictions which are then used by the optimizer to generate an input sequence to track the set-point

of the plant. The manipulated input to the plant is the sum of the outputs of both controllers configured in a parallel supervi-

sory control structure (Balbis et al., 2006).
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Fig. 7. Block diagram of control scheme
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The NMPC optimization problem is formulated as:

k
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Subject to:
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1 Mk uu  1,  PMk

maxmin uuu  k

In these equations, Φ is the cost function and d is the difference between measurements and model predictions added at

each time step to reduce process-model mismatch. M and P are the control and prediction horizons respectively while sy

is the set point vector. Q and R are weighting matrices penalizing output errors and input signal changes respectively.

Performing online tuning heuristically, the controller parameters are chosen as sampling time sT = 0.05 hours, Q = di-

ag  10010010050100 , R = diag  6.0112.01 , 1M and 5P for optimum performance.

Problem 1: Disturbance Rejection

The disturbances that commonly affect the evaporator can be divided into two categories: changes in upstream of the plant,

such as feed flowrate, temperature and density, and changes in the heat transfer coefficients of the heaters. To demonstrate

its effectiveness, the proposed NMPC is applied to the following case studies (Rangaiah, et al., 2002):
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1. Simultaneous changes of an increase in feed flow rate fQ from the nominal value of 37.7 to 39.7 m3/h and a 15%

decrease in the heat transfer coefficients, 1UA and 2UA in heaters 1 and 2.

2. A step decrease in feed density f from the nominal value of 1.310 to1.245 3cmg

3. A step increase in feed temperature fT from the nominal value of 60 to C66

The NMPC results of the above cases are presented in Figs. 8, 9 and 10 respectively with comparison to those of pre-

viously developed decentralized PI controllers. From these, it is seen that the new NMPC scheme performs better than pre-

viously developed PI controllers, particularly in terms of settling time.
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Fig. 8. NMPC & PI Control performance for simultaneous step changes in feed flowrate and heat transfer coefficients of heaters.
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Fig. 9. NMPC & PI Control performance for a step decrease in feed density from 1.310 to 1.245 3cmg
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Fig. 10. NMPC & PI Control performance for a step increase in feed temperature from 60 to C66 .
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Problem 2: Set point Tracking

Changes in product specification may necessitate set point tracking. The following servo problems (Rangaiah, et al., 2002)

are considered:

A. Step increase in the 4th stage product density 4 from the steady-state value of 1.54 to 1.62 g/cm3

B. Simultaneous step changes in set points of the 1st flash tank level 1h from the steady state value of 1.5 to 1.8 m and

of the 4th stage product density 4 from 1.54 to 1.46 g/cm3

The results of the above two cases presented in Figs. 11 and 12 respectively show superior servo performance of the new

NMPC scheme over the PI controllers. Fig. 13 shows the input behaviour for the Case B: Simultaneous step changes in set

points of the 1st flash tank level 1h from the steady state value of 1.5 to 1.8 m and of the 4th stage product density 4 from

1.54 to 1.46 g/cm3

0 50
1.46
1.48
1.5

1.52
1.54

1s
tf

la
sh

ta
nk

le
ve

lh
1

(m
)

time (hours) 0 50
2.23

2.24

2.25

2.26

2n
d

fla
sh

ta
nk

le
ve

lh
2

(m
)

time (hours)

PI
SetPoint
NMPC

0 50
2.23

2.24

2.25

2.26

3r
d

fla
sh

ta
nk

le
ve

lh
3

(m
)

time (hours) 0 50

2.25

2.26

2.27

4t
h

fla
sh

ta
nk

le
ve

lh
4

(m
)

time (hours)

0 10 20 30 40 50
1.5

1.55

1.6

1.65

P
ro

du
ct

de
ns

ity
rh

o 4

(g
/c

m
3 )

time (hours)
Fig. 11. NMPC &PI Control Performance for a step increase in 4th stage product density from 1.54 to 1.62 g/cm3.
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Fig. 12. NMPC &PI Control Performance for simultaneous step changes in 1st flash tank level & 4th stage product density
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Fig. 13. Plant input behaviour for simultaneous step changes in 1st flash tank level & 4th stage product density
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3.1. Quantitative Evaluation of NMPC Performance: Comparative Assessment

The control performance of the newly developed DRNN based NMPC scheme (denoted by NMPCNN in Table 3) is eva-

luated using the Integral of Squared Errors (ISE) which mathematically is defined as:

          
ft

T dtttttISE
0

spsp yyyy (25)

Table 3. Quantitative Comparison of NMPC & PI Control Performances using Integral of Squared Errors (ISE)

Integral-Squared Errors for each output and Total
Case Control

1h 2h 3h 4h 4 Total

1

2

3

A

B

NMPCNN
NMPCM2

PI
LMPC

NMPCNN
NMPCM2

PI
LMPC

NMPCNN
NMPCM2

PI
LMPC

NMPCNN
NMPCM2

PI
LMPC

NMPCNN
NMPCM2

PI
LMPC

2.5E-6
0.0035
0.0026
0.0018

5.6E-6
0.0240
0.0017
0.0012

4.0E-6
2.4E-4
3.3E-5
3.2E-5

4.6E-6
0.0810
1.8E-4
0.013

2.2E-6
0.0850
2.2E-4
0.0023

7.5E-5
0.0226
0.0037
0.0091

1.6E-4
0.0230
0.0091
0.0102

1.0E-4
9.3E-5
2.5E-5
3.9E-5

1.3E-4
0.0940
0.0025
0.0061

6.2E-5
0.0920
0.0042
0.0094

4.6E-5
6.3E-5
0.0032
0.0027

9.1E-5
2.3E-4
0.0086
0.0076

5.5E-5
1.6E-6
1.8E-5
3.0E-5

7.4E-5
2.6E-5
0.0031
0.0058

3.4E-5
5.6E-5
0.0047
0.0097

8.0E-8
1.0E-5
1.3E-4
1.5e-5

4.9E-8
4.2E-5
9.1E-5
2.0E-4

7.2E-8
4.7E-7
2.9E-7
2.7E-7

5.7E-8
2.7E-5
7.0E-6
2.1E-4

1.0E-7
9.6E-6
7.3E-6
3.3E-4

1.3E-4
7.1E-6
0.0057
0.0037

1.6E-4
1.3E-6
0.0048
0.3493

1.1E-4
8.7E-4
1.9E-4
6.1E-4

1.4E-4
0.0026
0.0256
0.2991

7.6E-5
0.0020
0.0264
0.5180

2.6E-4
0.0616
0.0153
0.0119

3.9E-4
0.0465
0.0243
0.3685

2.7E-4
3.4E-4
2.6E-4
7.1E-4

3.5E-4
0.178
0.0314
0.3124

1.7E-4
0.1790
0.0355
0.5397

The results are computed over a simulation time ft =50 hours and performance compared with those of other control

schemes. The control schemes used for comparison are the mechanistic model based NMPC scheme (NMPCM2) developed

in Rangaiah et al. (2002), the system of decentralized PI controllers and a linear model predictive control (LMPC) scheme,

which has the same parameters as the NMPC but takes the linear model around the operating point as the internal model.

The new NMPC scheme is seen to have superior performance as seen in Table 3. The superior performance of the DRNN
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based NMPC compared to the mechanistic model M2 based NMPC is explained thus. The mechanistic model NMPC was

based on a simplified model of the plant, M2 with additional assumptions (see Appendix) which introduce errors, but whose

use was justified in that it was simple enough for fast control (Rangaiah et al., 2002). The DRNN was however determined

using a highly detailed model M1 (Rangaiah et al., 2002) which better approximates the plant. Further, an NMPC scheme

was implemented directly (i.e., without any PI controller) in the earlier study whereas the DRNN-based NMPC is imple-

mented in parallel with PI controllers in the present work. This is another possible reason for the improved performance.

However, due to the strong nonlinearity of the process, the LMPC, although it is also configured in parallel with the PI con-

trollers, interferes with the PI control loops, making the performance worse particularly for large set-point tracking cases as

indicated in cases A and B (Table 3).

4. Conclusions

In this paper, a continuous-time DRNN model of an industrial, five-stage evaporator is developed, and its suitability for

representing the plant nonlinear dynamics demonstrated. An efficient training algorithm based on the Levenberg-Marquardt

method and automatic differentiation is applied to the network. The trained network, which shows good generalization

properties, has been implemented as the internal prediction model of an NMPC scheme. The developed controller, imple-

mented in parallel with PI controllers, has been tested and proven to perform well in disturbance rejection and set-point

tracking with significant improvements over PI controllers, LMPC and a previously developed approximate mechanistic

model based NMPC implemented without PI controllers. The parallel NMPC-PI scheme is similar to the well-known com-

bined feed-forward and feedback scheme. In this scheme, the NMPC enhances the PI control through prediction and optimi-

zation. The advantage of this scheme is demonstrated by the superior performance of the new NMPC. Nevertheless, the re-

sults of the LMPC also indicate that in such a parallel scheme, if the MPC is configured with a poor internal model, it can

also severely upset the PI control so that the control performance is significantly deteriorated. Therefore, a good internal

model is essential to the success of a parallel NMPC-PI control system.
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Appendix 1: Mechanistic models of the evaporator
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Model M2 for Stage 1
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Table A1 Assumptions made in the derivation of models (Kam and Tadé, 1997)

Assumptions for both Models M1 and M2 Additional assumptions for Model M2

1.Dynamics of instrumentation and control valves

are very fast and negligible when compared to

the dynamics of flash tanks

8. Liquor boiling point elevation in each flash tank

remains constant

2. Liquor density and temperature in each flash tank

are respectively the same as those of correspond-

ing discharged stream since perfect mixing is

usually achieved in each flash tank

9. Vapour pressure-temperature relation of flashed

vapour is linear

3. Specific heat capacities of all process streams

remain constant

10. Latent heat of vaporization of liquor remains

constant

4. Effect of falling film on the heat transfer rate and

the dynamics of heater discharge temperatures

are neglected

11. No accumulation of vapour in the flash tanks

and the steam space in the shell side of the hea-

ters remains unchanged.

5. Liquor in each flash tank is in equilibrium with

the corresponding flashed vapour

6. Heat losses from the evaporator system are neg-

ligible

7. No flashing of liquor in the heaters


