23 research outputs found

    Weight Optimization of Mono Leaf Spring Used for Light Passenger Vehicle

    Get PDF
    The leaf spring is widely used in automobiles as major part of suspension system. These springs are intended to bare jerks and vibrations during traveling on uneven roads. The suspension leaf spring is one of the potential items for weight reduction in automobiles. The reduction of weight will achieve Fuel efficiency. The emphasis of this paper is on the application of FEA concept to compare three materials for leaf spring and proposed the material having best strength to weight ratio among them. Three materials used for comparing are the conventional steel, composite E-Glass Epoxy and Carbon Epoxy. This present work is to estimate and compare the deflection, bending stress induced in the leaf spring by these materials. The leaf spring, which is used for analyzing, is a mono leaf spring of Light passenger vehicle. A model of such leaf spring has been designed from actual steel leaf spring and analyzed using ANSYS in this paper. Theoretical calculations and Testing is done for validation of results. DOI: 10.17762/ijritcc2321-8169.15034

    Exploiting high pressure advantages in catalytic hydrogenation of carbon dioxide to methanol

    Get PDF
    The aim of this thesis was to develop highly efficient CO2 hydrogenation process towards methanol by making use of high pressure approach. A high pressure lab scale plant was developed to conduct CO2 hydrogenation up to 400 bar. High pressure and low temperature were found to be the favourable conditions to excellent catalytic activity. Improved reaction performance towards methanol synthesis and reverse water-gas shift reaction was observed for the Ba and K promoted Cu/Al2O3 catalysts, respectively. Almost complete one-pass conversion of CO2 into methanol was observed under optimized process conditions over coprecipitated Cu/ZnO/Al2O3 catalysts. One-step transformation of CO2 into dimethyl ether was achieved with excellent catalytic activity. Selective formation of alkane or alkene was obtained by varying pressure of the secondary reactor coupled with methanol synthesis reactor. A high pressure, high temperature capillary cell for in-situ XAS was developed having capability for combined XAFS-Raman experiments under high pressure conditions.El propòsit d’aquesta tesis va ser desenvolupar un procés altament eficient per a la hidrogenació de CO2 a metanol, mitjançant l’ús de micro-reactors d’alta pressió. Una planta d’alta pressió va ser desenvolupada per a dur a terme la hidrogenació de CO2 fins a 400 bar. Una millora en el rendiment de la reacció cap a la síntesis de metanol i cap a la reacció inversa del desplaçament del gas d’aigua va ser observada per als catalitzadors de Cu/Al2O3 promocionats amb Ba i K, respectivament. Conversió, gairebé completa de CO2 a metanol, en una etapa, va ser observada en les condicions de procés optimitzades utilitzant catalitzadors de Cu/ZnO/Al2O3. Transformació de CO2 a dimetil-èter, alcans i alquens en una sola etapa de reacció, tot mantenint la conversió de CO2 elevada. Una cel•la capil•lar d’alta pressió i alta temperatura, per a mesures espectroscòpiques de raig-X in-situ, va ser desenvolupada

    Optimizing the oxide support composition in Pr-doped CeO2 towards highly active and selective Ni-based CO2 methanation catalysts

    Get PDF
    In this study, Ni catalysts supported on Pr-doped CeO2 are studied for the CO2 methanation reaction and the effect of Pr doping on the physicochemical properties and the catalytic performance is thoroughly evaluated. It is shown, that Pr3+ ions can substitute Ce4+ ones in the support lattice, thereby introducing a high population of oxygen vacancies, which act as active sites for CO2 chemisorption. Pr doping can also act to reduce the crystallite size of metallic Ni, thus promoting the active metal dispersion. Catalytic performance evaluation evidences the promoting effect of low Pr loadings (5 at% and 10 at%) towards a higher catalytic activity and lower CO2 activation energy. On the other hand, higher Pr contents negate the positive effects on the catalytic activity by decreasing the oxygen vacancy population, thereby creating a volcano-type trend towards an optimum amount of aliovalent substitution.AIΤ, NDC and MAG acknowledge support of this work by the project “Development of new innovative low carbon energy technologies to improve excellence in the Region of Western Macedonia” (MIS 5047197) which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).Peer reviewe

    Continuous DMC synthesis from CO2 and methanol over CeO2 catalyst in fixed bed reactor in presence of dehydrating agent

    No full text
    Methanol and carbon dioxide are continuously and efficiently converted to dimethyl carbonate (DMC) over CeO2 catalyst using 2-cyanopyrindine as a recyclable dehydrating agent in a fixed bed reactor. The process was operated over a wide range of pressure (1-300 bar) by feeding CO2 and the stoichiometric amount of methanol and 2-cyanopyrinde mixture into the reactor. The study shows successful demonstration of direct DMC synthesis mediated by dehydrating agent with outstanding methanol conversion (&gt;95%) and dimethyl carbonate selectivity (&gt;99%) under optimized conditions. Remarkably higher reaction rates were achieved compared to those in batch operation.</p

    High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol

    No full text
    Interplay between three important reaction parameters (pressure, temperature, and space velocity) in stoichiometric hydrogenation of carbon dioxide (CO2:H2=1:3) was systematically investigated using a commercial Cu/ZnO/Al2O3 catalyst. Their impacts on reaction performance and important ranges of process conditions towards full one-pass conversion of CO2 to methanol at high yield were rationalized based on the kinetics and thermodynamics of the reaction. Under high-pressure condition above a threshold temperature, the reaction overcomes kinetic control, entering thermodynamically controlled regime. Ca. 90% CO2 conversion and &gt;95% methanol selectivity was achieved with a very good yield (0.9-2.4 gMeOH gcat-1 h-1) at 442 bar. Such high-pressure condition induces the formation of highly dense phase and consequent mass transfer limitation. When this limitation is overcome, the advantage of high-pressure conditions can be fully exploited and weight time yield as high as 15.3 gMeOH gcat-1 h-1 could be achieved at 442 bar. Remarkable advantages of high-pressure conditions in the terms reaction kinetics, thermodynamics, and phase behavior in the aim to achieve better methanol yield are discussed.</p

    Catalysis under microscope: Unraveling the mechanism of catalyst de- and re-activation in the continuous dimethyl carbonate synthesis from CO2 and met

    No full text
    The high efficiency of 2-cyanopyridine (2-CP) as dehydrating agent in the direct dimethyl carbonate (DMC) synthesis from CO2 and methanol over CeO2 catalysts has been recently demonstrated with excellent DMC yields (&gt;90%) in both batch and continuous operations. The catalytic reaction is expected to involve a complex three-phase boundary due to the high boiling points of 2-CP and also 2-picolinamide (2-PA) formed by hydration of 2-CP. The catalyst is also known to deactivate noticeably in the time-scale of days during the continuous operation. The aim of this work is to gain visual information of the catalyst under operando conditions by means of an optically transparent, fused quartz reactor to understand the behavior of catalyst deactivation and to learn about the phase behavior of the reaction mixture. The catalytic tests using the fused quartz reactor could reproduce the results observed in a common stainless steel reactor, and the effects of reaction temperature and pressure (up to 30 bar) were examined in detail to show that there is an optimum condition (30 bar, 120 &deg;C) to achieve the best catalytic performance. The visual inspection was further combined with IR and Raman spectroscopic studies to identify the origin of the catalyst deactivation and establish an efficient catalyst reactivation protocol. Interestingly, not coke but 2-PA surface adsorption was found responsible for the catalyst deactivation. The operando visual inspection evidenced that the surface of the CeO2 catalyst particles is constantly wet and also coated with some crystallites (likely of 2-PA) during the reaction, whereas the bulk of the CeO2 particle is still accessible for the reactants and thus available for the reaction.</p

    Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle

    No full text
    The interest in and need for carbon-free fuels that do not rely on fossil fuels are constantly growing from both environmental and energetic perspectives. Green hydrogen production is at the core of the transition away from conventional fuels. Along with popularly investigated pathways for hydrogen production, thermochemical water splitting using redox materials is an interesting option for utilizing thermal energy, as this approach makes use of temperature looping over the material to produce hydrogen from water. Herein, two-step thermochemical water splitting processes are discussed and the key aspects are analyzed using the most relevant information present in the literature. Redox materials and their compositions, which have been proven to be efficient for this reaction, are reported. Attention is focused on non-volatile redox oxides, as the quenching step required for volatile redox materials is unnecessary. Reactors that could be used to conduct the reduction and oxidation reaction are discussed. The most promising materials are compared to each other using a multi-criteria analysis, providing a direction for future research. As evident, ferrite supported on yttrium-stabilized zirconia, ceria doped with zirconia or samarium and ferrite doped with nickel as the core and an yttrium (III) oxide shell are promising choices. Isothermal cycling and lowering of the reduction temperature are outlined as future directions towards increasing hydrogen yields and improving the cyclability.</p

    Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst

    No full text
    The need to replace fossil fuels with sustainable alternatives has been a critical issue in recent years. Hydrogen fuel is a promising alternative to fossil fuels because of its wide availability and high energy density. For the very first time, novel microreactor configurations for the formic acid decomposition have been studied using computational modeling methodologies. The decomposition of formic acid using a commercial 5 wt % Pd/C catalyst, under mild conditions, has been assessed in packed bed, coated wall, and membrane microreactors. Computational fluid dynamics (CFD) was utilized to develop the comprehensive heterogeneous microreactor models. The CFD modeling study begins with the development of a packed bed microreactor to validate the experimental work, subsequently followed by the theoretical development of novel microreactor configurations to perform further studies. Previous work using CFD modeling had predicted that the deactivation of the Pd/C catalyst was due to the production of the poisoning species CO during the reaction. The novel membrane microreactor facilitates the continuous removal of CO during the reaction, therefore prolonging the lifetime of the catalyst and enhancing the formic acid conversion by approximately 40% when compared to the other microreactor configurations. For all microreactors studied, the formic acid conversion increases as the temperature increases, and the liquid flow rate decreases. Further studies revealed that all microreactor configurations had negligible internal and external pore diffusion resistances. The detailed models developed in this work have provided an interesting insight into the intensification of the formic acid decomposition reaction over a Pd/C catalyst

    Computational Investigation of Microreactor Configurations for Hydrogen Production from Formic Acid Decomposition Using a Pd/C Catalyst

    Get PDF
    The need to replace fossil fuels with sustainable alternatives has been a critical issue in recent years. Hydrogen fuel is a promising alternative to fossil fuels because of its wide availability and high energy density. For the very first time, novel microreactor configurations for the formic acid decomposition have been studied using computational modeling methodologies. The decomposition of formic acid using a commercial 5 wt % Pd/C catalyst, under mild conditions, has been assessed in packed bed, coated wall, and membrane microreactors. Computational fluid dynamics (CFD) was utilized to develop the comprehensive heterogeneous microreactor models. The CFD modeling study begins with the development of a packed bed microreactor to validate the experimental work, subsequently followed by the theoretical development of novel microreactor configurations to perform further studies. Previous work using CFD modeling had predicted that the deactivation of the Pd/C catalyst was due to the production of the poisoning species CO during the reaction. The novel membrane microreactor facilitates the continuous removal of CO during the reaction, therefore prolonging the lifetime of the catalyst and enhancing the formic acid conversion by approximately 40% when compared to the other microreactor configurations. For all microreactors studied, the formic acid conversion increases as the temperature increases, and the liquid flow rate decreases. Further studies revealed that all microreactor configurations had negligible internal and external pore diffusion resistances. The detailed models developed in this work have provided an interesting insight into the intensification of the formic acid decomposition reaction over a Pd/C catalyst
    corecore