95 research outputs found

    Toward a Motor Theory of Sign Language Perception

    Get PDF
    Researches on signed languages still strongly dissociate lin- guistic issues related on phonological and phonetic aspects, and gesture studies for recognition and synthesis purposes. This paper focuses on the imbrication of motion and meaning for the analysis, synthesis and evaluation of sign language gestures. We discuss the relevance and interest of a motor theory of perception in sign language communication. According to this theory, we consider that linguistic knowledge is mapped on sensory-motor processes, and propose a methodology based on the principle of a synthesis-by-analysis approach, guided by an evaluation process that aims to validate some hypothesis and concepts of this theory. Examples from existing studies illustrate the di erent concepts and provide avenues for future work.Comment: 12 pages Partiellement financ\'e par le projet ANR SignCo

    Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis

    Full text link
    Background Endocrine-disrupting chemicals (EDCs) contribute to disease and dysfunction and incur high associated costs (>1% of the gross domestic product [GDP] in the European Union). Exposure to EDCs varies widely between the USA and Europe because of differences in regulations and, therefore, we aimed to quantify disease burdens and related economic costs to allow comparison. Methods We used existing models for assessing epidemiological and toxicological studies to reach consensus on probabilities of causation for 15 exposure–response relations between substances and disorders. We used Monte Carlo methods to produce realistic probability ranges for costs across the exposure–response relation, taking into account uncertainties. Estimates were made based on population and costs in the USA in 2010. Costs for the European Union were converted to US(€1= (€1=1·33). Findings The disease costs of EDCs were much higher in the USA than in Europe (340billion[2⋅33340 billion [2·33% of GDP] vs 217 billion [1·28%]). The difference was driven mainly by intelligence quotient (IQ) points loss and intellectual disability due to polybrominated diphenyl ethers (11 million IQ points lost and 43 000 cases costing 266billionintheUSAvs873 000IQpointslostand3290casescosting266 billion in the USA vs 873 000 IQ points lost and 3290 cases costing 12·6 billion in the European Union). Accounting for probability of causation, in the European Union, organophosphate pesticides were the largest contributor to costs associated with EDC exposure (121billion),whereasintheUSAcostsduetopesticidesweremuchlower(121 billion), whereas in the USA costs due to pesticides were much lower (42 billion). Interpretation EDC exposure in the USA contributes to disease and dysfunction, with annual costs taking up more than 2% of the GDP. Differences from the European Union suggest the need for improved screening for chemical disruption to endocrine systems and proactive prevention. Funding Endocrine Society, Ralph S French Charitable Foundation, and Broad Reach Foundation. © 2016 Elsevier Lt

    Design, construction, and test of the Gas Pixel Detectors for the IXPE mission

    Get PDF
    Due to be launched in late 2021, the Imaging X-Ray Polarimetry Explorer (IXPE) is a NASA Small Explorer mission designed to perform polarization measurements in the 2-8 keV band, complemented with imaging, spectroscopy and timing capabilities. At the heart of the focal plane is a set of three polarization-sensitive Gas Pixel Detectors (GPD), each based on a custom ASIC acting as a charge-collecting anode. In this paper we shall review the design, manufacturing, and test of the IXPE focal-plane detectors, with particular emphasis on the connection between the science drivers, the performance metrics and the operational aspects. We shall present a thorough characterization of the GPDs in terms of effective noise, trigger efficiency, dead time, uniformity of response, and spectral and polarimetric performance. In addition, we shall discuss in detail a number of instrumental effects that are relevant for high-level science analysis -- particularly as far as the response to unpolarized radiation and the stability in time are concerned.Comment: To be published in Astroparticle Physic

    Three-row versus two-row circular staplers for left-sided colorectal anastomosis: a propensity score-matched analysis of the iCral 2 and 3 prospective cohorts

    Get PDF
    Background: Since most anastomoses after left-sided colorectal resections are performed with a circular stapler, any technological change in stapling devices may influence the incidence of anastomotic adverse events. The aim of the present study was to analyze the effect of a three-row circular stapler on anastomotic leakage and related morbidity after left-sided colorectal resections. Materials and methods: A circular stapled anastomosis was performed in 4255 (50.9%) out of 8359 patients enrolled in two prospective multicenter studies in Italy, and, after exclusion criteria to reduce heterogeneity, 2799 (65.8%) cases were retrospectively analyzed through a 1:1 propensity score-matching model including 20 covariates relative to patient characteristics, to surgery and to perioperative management. Two well-balanced groups of 425 patients each were obtained: group (A) – true population of interest, anastomosis performed with a three-row circular stapler; group (B) – control population, anastomosis performed with a two-row circular stapler. The target of inferences was the average treatment effect in the treated (ATT). The primary endpoints were overall and major anastomotic leakage and overall anastomotic bleeding; the secondary endpoints were overall and major morbidity and mortality rates. The results of multiple logistic regression analyses for the outcomes, including the 20 covariates selected for matching, were presented as odds ratios (OR) and 95% confidence intervals (95% CI). Results: Group A versus group B showed a significantly lower risk of overall anastomotic leakage (2.1 vs. 6.1%; OR 0.33; 95% CI 0.15–0.73; P = 0.006), major anastomotic leakage (2.1 vs. 5.2%; OR 0.39; 95% CI 0.17–0.87; P = 0.022), and major morbidity (3.5 vs. 6.6% events; OR 0.47; 95% CI 0.24–0.91; P = 0.026). Conclusion: The use of three-row circular staplers independently reduced the risk of anastomotic leakage and related morbidity after left-sided colorectal resection. Twenty-five patients were required to avoid one leakage

    Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project

    Get PDF
    In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory

    The THESEUS space mission concept: science case, design and expected performances

    Get PDF
    THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5¿1 arcmin localization, an energy band extending from several MeV down to 0.3¿keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7¿m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift 10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ¿20s/early ¿30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).© 2018 COSPARS.E. acknowledges the financial support from contracts ASI-INAF 1/009/10/0, NARO15 ASI-INAF 1/037/12/0 and ASI 2015-046-R.0. R.H. acknowledges GACR grant 13-33324S. S.V. research leading to these results has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606176. D.S. was supported by the Czech grant 1601116S GA CR. Maria Giovanna Dainotti acknowledges funding from the European Union through the Marie Curie Action FP7-PEOPLE-2013-IOF, under grant agreement No. 626267 (>Cosmological Candles>)

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    The Imaging X-ray Polarimetry Explorer (IXPE): Technical Overview

    Get PDF
    The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding linear polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, including polarization maps of several x-ray-bright extended sources and phase-resolved polarimetry of many bright pulsating x-ray sources

    The THESEUS space mission concept: science case, design and expected performances

    Get PDF
    © 2018 COSPAR THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5–1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) follow-up with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼10, signatures of Pop III stars, sources and physics of re-ionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late ’20s/early ’30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA)

    XIPE: the x-ray imaging polarimetry explorer

    Get PDF
    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden
    • …
    corecore